Lower semicontinuity and relaxation of linear-growth integral functionals under PDE constraints

被引:22
作者
Arroyo-Rabasa, Adolfo [1 ]
De Philippis, Guido [2 ]
Rindler, Filip [3 ]
机构
[1] Univ Leipzig, Math Inst, Augustuspl 10, D-04109 Leipzig, Germany
[2] Scuola Int Super Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
[3] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Lower semicontinuity; functional on measures; A-quasiconvexity; generalized Young measure; A-QUASICONVEXITY; YOUNG MEASURES; CONVEX; BV;
D O I
10.1515/acv-2017-0003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show general lower semicontinuity and relaxation theorems for linear-growth integral functionals defined on vector measures that satisfy linear PDE side constraints (of arbitrary order). These results generalize several known lower semicontinuity and relaxation theorems for BV, BD, and for more general first-order linear PDE side constrains. Our proofs are based on recent progress in the understanding of singularities of measure solutions to linear PDEs and of the generalized convexity notions corresponding to these PDE constraints.
引用
收藏
页码:219 / 255
页数:37
相关论文
共 32 条
[1]  
Alibert J. J., 1997, J. Convex Anal., V4, P129
[2]   ON THE RELAXATION IN BV(OMEGA R(M)) OF QUASI-CONVEX INTEGRALS [J].
AMBROSIO, L ;
DALMASO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 109 (01) :76-97
[3]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[4]  
[Anonymous], 2003, LECT NOTES MATH
[5]  
[Anonymous], 1966, GRUNDLEHREN MATH WIS
[6]   Relaxation and optimization for linear-growth convex integral functionals under PDE constraints [J].
Arroyo-Rabasa, Adolfo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (07) :2388-2427
[7]  
Bala M., 2013, CALC VAR PARTIAL DIF, V47, P465
[8]  
BALL JM, 1984, J FUNCT ANAL, V58, P225, DOI 10.1016/0022-1236(84)90041-7
[9]  
BARROSO A. C., 2000, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V29, P19
[10]  
Dacorogna B., 1982, Weak Continuity and Weak Lower Semicontinuity for Nonlinear Functionals. Lecture Notes in Math, DOI [10.1007/BFb0096144, DOI 10.1007/BFB0096144]