Injective Tauberian Operators on L1 and Operators with Dense Range on l∞

被引:7
作者
Johnson, William [1 ]
Nasseri, Amir Bahman [2 ]
Schechtman, Gideon [3 ]
Tkocz, Tomasz [4 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Tech Univ Dortmund, Fak Math, D-44221 Dortmund, Germany
[3] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
[4] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2015年 / 58卷 / 02期
基金
美国国家科学基金会;
关键词
L-1; Tauberian operator; l(infinity);
D O I
10.4153/CMB-2014-054-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There exist injective Tauberian operators on L-1(0, 1) that have dense, nonclosed range. This gives injective nonsurjective operators on l(infinity) that have dense range. Consequently, there are two quasi-complementary noncomplementary subspaces of l(infinity) that are isometric to l(infinity).
引用
收藏
页码:276 / 280
页数:5
相关论文
共 11 条
[1]  
Albiac F, 2006, GRAD TEXTS MATH, V233, P1
[2]  
Argyros S A., 2006, Methods in Banach Space Theory, P1
[3]   Combining geometry and combinatorics: a unified approach to sparse signal recovery [J].
Berinde, R. ;
Gilbert, A. C. ;
Indyk, P. ;
Karloff, H. ;
Strauss, M. J. .
2008 46TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, VOLS 1-3, 2008, :798-+
[4]  
Diestel J., 1995, Absolutely summing operators, 43 volume of Cambridge Studies in Advanced Mathematics, V43
[5]   ON THE INSTABILITY OF NON-SEMI-FREDHOLM OPERATORS UNDER COMPACT PERTURBATIONS [J].
GONZALEZ, M ;
ONIEVA, VM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 114 (02) :450-457
[6]  
Gonzalez M., 2010, OPER THEORY ADV APPL, V194
[7]  
Lindenstrauss J., 1979, ERGEBNISSE MATH IHRE, V97
[8]   NOTE ON A THEOREM OF MURRAY [J].
MACKEY, GW .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (04) :322-325
[9]  
Nasseri A. B., SURJECTIVITY OPERATO
[10]  
Nasseri A. B., ARXIV14063815