An extended-Lagrangian scheme for charge equilibration in reactive molecular dynamics simulations

被引:24
作者
Nomura, Ken-ichi
Small, Patrick E.
Kalia, Rajiv K.
Nakano, Aiichiro [1 ]
Vashishta, Priya
机构
[1] Univ So Calif, Collaboratory Adv Comp & Simulat, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
Reactive molecular dynamics; Extended Lagrangian scheme; Parallel computing; FORCE-FIELD; POTENTIALS; OXIDATION; REAXFF; DENSITY;
D O I
10.1016/j.cpc.2015.02.023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Reactive molecular dynamics (RMD) simulations describe chemical reactions at orders-of-magnitude faster computing speed compared with quantum molecular dynamics (QMD) simulations. A major computational bottleneck of RMD is charge-equilibration (QEq) calculation to describe charge transfer between atoms. Here, we eliminate the speed-limiting iterative minimization of the Coulombic energy in QEq calculation by adapting an extended-Lagrangian scheme that was recently proposed in the context of QMD simulations, Souvatzis and Niklasson (2014). The resulting XRMD simulation code drastically improves energy conservation compared with our previous RMD code, Nomura et al. (2008), while substantially reducing the time-to-solution. The XRMD code has been implemented on parallel computers based on spatial decomposition, achieving a weak-scaling parallel efficiency of 0.977 on 786,432 IBM Blue Gene/Q cores for a 67.6 billion-atom system. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 96
页数:6
相关论文
共 38 条
[1]   Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques [J].
Aktulga, H. M. ;
Fogarty, J. C. ;
Pandit, S. A. ;
Grama, A. Y. .
PARALLEL COMPUTING, 2012, 38 (4-5) :245-259
[2]   REACTIVE MOLECULAR DYNAMICS: NUMERICAL METHODS AND ALGORITHMIC TECHNIQUES [J].
Aktulga, Hasan Metin ;
Pandit, Sagar A. ;
van Duin, Adri C. T. ;
Grama, Ananth Y. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (01) :C1-C23
[3]   A numerical recipe for accurate image reconstruction from discrete orthogonal moments [J].
Bayraktar, Bulent ;
Bernas, Tytus ;
Robinson, J. Paul ;
Rajwa, Bartek .
PATTERN RECOGNITION, 2007, 40 (02) :659-669
[4]   O(N) methods in electronic structure calculations [J].
Bowler, D. R. ;
Miyazaki, T. .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (03)
[5]   EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS [J].
BRENNER, DW .
PHYSICAL REVIEW B, 1990, 42 (15) :9458-9471
[6]   Dynamics of oxidation of aluminum nanoclusters using variable charge molecular-dynamics simulations on parallel computers [J].
Campbell, T ;
Kalia, RK ;
Nakano, A ;
Vashishta, P ;
Ogata, S ;
Rodgers, S .
PHYSICAL REVIEW LETTERS, 1999, 82 (24) :4866-4869
[7]   UNIFIED APPROACH FOR MOLECULAR-DYNAMICS AND DENSITY-FUNCTIONAL THEORY [J].
CAR, R ;
PARRINELLO, M .
PHYSICAL REVIEW LETTERS, 1985, 55 (22) :2471-2474
[8]   Energy conserving, linear scaling Born-Oppenheimer molecular dynamics [J].
Cawkwell, M. J. ;
Niklasson, Anders M. N. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (13)
[9]   Embrittlement of Metal by Solute Segregation-Induced Amorphization [J].
Chen, Hsiu-Pin ;
Kalia, Rajiv K. ;
Kaxiras, Efthimios ;
Lu, Gang ;
Nakano, Aiichiro ;
Nomura, Ken-ichi ;
van Duin, Adri C. T. ;
Vashishta, Priya ;
Yuan, Zaoshi .
PHYSICAL REVIEW LETTERS, 2010, 104 (15)
[10]   Linear scaling electronic structure methods [J].
Goedecker, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (04) :1085-1123