Three-Dimensional Computational Fluid Dynamics Modelling of Oxygen Bubble Transport in Polymer Electrolyte Membrane Electrolyzer Porous Transport Layers

被引:79
作者
Arbabi, F. [1 ]
Montazeri, H. [1 ]
Abouatallah, R. [2 ]
Wang, R. [2 ]
Bazylak, A. [1 ]
机构
[1] Univ Toronto, Fac Appl Sci & Engn, Thermofluids Energy & Adv Mat TEAM Lab, Dept Mech & Ind Engn,Inst Sustainable Energy, Toronto, ON M5S 3G8, Canada
[2] Hydrogenics Corp, Adv Stack Technol, Mississauga, ON L5T 2N6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PEM ELECTROLYZER; 2-PHASE FLOW; WATER ELECTROLYSIS; MULTIPHASE FLOWS; IN-SITU; HYDROGEN; SIMULATION; POROSITY; SURFACE; LIQUID;
D O I
10.1149/2.0091611jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A three-dimensional (3D), two-phase numerical model was developed and presented as a useful tool for investigating oxygen bubble propagation in porous transport layers (PTLs) (otherwise known as gas diffusion layers (GDLs)) of polymer electrolyte membrane (PEM) electrolyzers. The volume-of-fluid (VoF) technique was employed to simulate the liquid-gas interface movement through liquid-saturated porous media designed to be representative of PEM electrolyzer PTLs. The circulation of the liquid within the channel and the porous domain was included in the model. Bubble propagation patterns and bulk saturations for porous material representations of commonly used PTLs were determined as a function of time leading up to the moment of breakthrough. Previously conducted experimental microfluidic investigations were used for model validation, and it was found that the numerical results were in good agreement with the numerical predictions. The validated model was used to calculate pressure variations in bubbles during propagation, and the highest threshold capillary pressure corresponding to a critical throat was introduced as a means to measure the efficacy of oxygen bubble removal. The information obtained from the developed numerical tool can be used for designing and evaluating PTL microstructures for next generation electrolyzer materials. (C) 2016 The Electrochemical Society. All rights reserved.
引用
收藏
页码:F3062 / F3069
页数:8
相关论文
共 50 条
  • [21] Modeling water transport in polymer electrolyte membrane electrolyzers using a one-dimensional transport model
    Motupally, Shikhar
    Mishra, Lubhani
    Thiagarajan, Raghav Sai
    Subramanian, Venkat R.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 62 : 352 - 361
  • [22] Manufacturing of Large-Scale Titanium-Based Porous Transport Layers for Polymer Electrolyte Membrane Electrolysis by Tape Casting
    Hackemueller, Franz Josef
    Borgardt, Elena
    Panchenko, Olha
    Mueller, Martin
    Bram, Martin
    ADVANCED ENGINEERING MATERIALS, 2019, 21 (06)
  • [23] Effect of Microstructure of Porous Transport Layer on Performance in Polymer Electrolyte Membrane Water Electrolyser
    Majasan, Jude O.
    Iacoviello, Francesco
    Shearing, Paul R.
    Brett, Dan J. L.
    3RD ANNUAL CONFERENCE IN ENERGY STORAGE AND ITS APPLICATIONS (3RD CDT-ESA-AC), 2018, 151 : 111 - 119
  • [24] Two-phase mass transfer in porous transport layers of the electrolysis cell based on a polymer electrolyte membrane: Analysis of the limitations
    Kalinnikov, A. A.
    Grigoriev, S. A.
    Bessarabov, D. G.
    Bouzek, K.
    ELECTROCHIMICA ACTA, 2021, 387
  • [25] Three-Dimensional Computational Fluid Dynamics Modeling of a Prismatic Spouted Bed
    Gryczka, Oliver
    Heinrich, Stefan
    Deen, Niels G.
    Kuipers, Johannes A. M.
    Moerl, Lothar
    CHEMICAL ENGINEERING & TECHNOLOGY, 2009, 32 (03) : 470 - 481
  • [26] Influence of sintering temperature on microstructure and electrical properties of titanium porous-transport layers for proton exchange membrane water electrolyzer applications
    Phuong, Doan Dinh
    Linh, Do Chi
    Hanh, Pham Hong
    Thinh, Nguyen Quoc
    Van Duong, Luong
    BULLETIN OF MATERIALS SCIENCE, 2025, 48 (01)
  • [27] Lattice Boltzmann simulation of oxygen removal from anode porous transport layer in proton exchange membrane electrolyzer
    Zhang, Jingchang
    Guan, Xiaoping
    Yang, Ning
    CHEMICAL ENGINEERING SCIENCE, 2024, 295
  • [28] Operando X-ray tomography and sub-second radiography for characterizing transport in polymer electrolyte membrane electrolyzer
    Leonard, Emily
    Shum, Andrew D.
    Normile, Stanley
    Sabarirajan, Dinesh C.
    Yared, Dominic G.
    Xiao, Xianghui
    Zenyuk, Iryna V.
    ELECTROCHIMICA ACTA, 2018, 276 : 424 - 433
  • [29] Portraying the Countercurrent Flow on Packings by Three-Dimensional Computational Fluid Dynamics Simulations
    Xu, Y.
    Paschke, S.
    Repke, J. -U.
    Yuan, J.
    Wozny, G.
    CHEMICAL ENGINEERING & TECHNOLOGY, 2008, 31 (10) : 1445 - 1452
  • [30] Improving the performance of industrial clarifiers using three-dimensional computational fluid dynamics
    Das, Shankhadeep
    Bai, Hua
    Wu, Chunliang
    Kao, Jen-Hsiang
    Barney, Bryon
    Kidd, Mike
    Kuettel, Mark
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2016, 10 (01) : 130 - 144