Optimal control of pattern formations for an SIR reaction-diffusion epidemic model

被引:44
作者
Chang, Lili [1 ]
Gao, Shupeng [2 ,3 ]
Wang, Zhen [2 ,3 ]
机构
[1] Shanxi Univ, Complex Syst Res Ctr, Taiyuan 030006, Shanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Mech Engn, Xian 710072, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Shaanxi, Peoples R China
关键词
Reaction-diffusion; Epidemic model; Turing pattern; Optimal control; OPTIMAL-CONTROL STRATEGIES; SPATIAL DYNAMICS; MATHEMATICAL-MODEL; TRANSMISSION;
D O I
10.1016/j.jtbi.2022.111003
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Patterns arising from the reaction-diffusion epidemic model provide insightful aspects into the transmission of infectious diseases. For a classic SIR reaction-diffusion epidemic model, we review its Turing pattern formations with different transmission rates. A quantitative indicator, "normal serious prevalent area (NSPA)", is introduced to characterize the relationship between patterns and the extent of the epidemic. The extent of epidemic is positively correlated to NSPA. To effectively reduce NSPA of patterns under the large transmission rates, taken removed (recovery or isolation) rate as a control parameter, we consider the mathematical formulation and numerical solution of an optimal control problem for the SIR reaction-diffusion model. Numerical experiments demonstrate the effectiveness of our method in terms of control effect, control precision and control cost. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 30 条
[1]  
Anita S, 2011, MODEL SIMUL SCI ENG, P1
[2]  
[Anonymous], 2010, Graduate Studies in Mathematics
[3]  
Brauer F., 2012, Mathematical Models in Population Biology and Epidemiology, V2nd, DOI DOI 10.1007/978-1-4614-1686-9
[4]   Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations [J].
Casas, E .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (04) :1297-1327
[5]   On the Regional Control of a Reaction-Diffusion System SIR [J].
El Alami Laaroussi, Adil ;
Rachik, Mostafa .
BULLETIN OF MATHEMATICAL BIOLOGY, 2019, 82 (01)
[6]   A mathematical model of the spread of feline leukemia virus (FeLV) through a highly heterogeneous spatial domain [J].
Fitzgibbon, WE ;
Langlais, M ;
Morgan, JJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) :570-588
[7]   Nonlocal interaction effects on pattern formation in population dynamics [J].
Fuentes, MA ;
Kuperman, MN ;
Kenkre, VM .
PHYSICAL REVIEW LETTERS, 2003, 91 (15)
[8]   Optimal control of a nutrient-phytoplankton-zooplankton-fish system [J].
Garvie, Marcus R. ;
Trenchea, Catalin .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (03) :775-791
[9]   IDENTIFICATION OF SPACE-TIME DISTRIBUTED PARAMETERS IN THE GIERER-MEINHARDT REACTION-DIFFUSION SYSTEM [J].
Garvie, Marcus R. ;
Trenchea, Catalin .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2014, 74 (01) :147-166
[10]   New strategies for the elimination of polio from India [J].
Grassly, Nicholas C. ;
Fraser, Christophe ;
Wenger, Jay ;
Deshpande, Jagadish M. ;
Sutter, Roland W. ;
Heymann, David L. ;
Aylward, R. Bruce .
SCIENCE, 2006, 314 (5802) :1150-1153