Pure quasi-P wave forward modeling method in TI media and its application to RTM

被引:8
作者
Yang Peng [1 ]
Li Zhen-Chun [1 ]
Gu Bing-Luo [1 ]
机构
[1] China Univ Petr East China, Sch Geosci, Qingdao 266580, Shandong, Peoples R China
来源
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION | 2017年 / 60卷 / 11期
关键词
TI media; Pure qP waves; Dispersion relation; Elliptical decomposition; Reverse time migration; TRANSVERSELY ISOTROPIC MEDIA; ANISOTROPIC MEDIA; ELASTIC-WAVE; TTI MEDIA; PROPAGATION; SEPARATION; MIGRATION; EQUATIONS;
D O I
10.6038/cjg20171130
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Based on the exact dispersion relation proposed by Tsvankin, and adopting the approximate expanded method, this work derives the decoupled pure quasi-P wave equations in a TTI medium. Then we divide the pseudodifferential operator in the equations into a Laplace operator and a scalar operator to indicate the exact transmission direction of qP waves, and establish second order pure qP wave equations in the time domain. In this induction process, there is no need to set S wave velocity at 0, which can describe the kinetic features of qP waves in a more accurate way. Compared with the second-order decoupled qP wave equations in the wavenumber domain, this method has a higher computation efficiency and lower storage demand. While compared with the second-order pure qP wave equations in the time domain which is based on derivatibh from Alkhalifah dispersion relation, it has better suppression of artifacts and less numeral error, being more general. But using this method to solve wave vectors is asymptotic approximation to adopting first-order of wavefield gradients, which might cause inaccurate amplitude of qP waves perpendicular to the axis. In order to correct amplitude and apply the elliptical decomposition method to these equations, pure qP wave elliptical decomposition equations have been derived, achieving more balanced amplitude. Compared with equations proposed by Xu, the wavefield amplitude derived from pure qP wave elliptical decomposition equations established in this paper is more accurate. Firstly, we choose a homogeneous TTI medium to conduct forward modeling of qP waves, and analyze the amplitude of single trace of the qP wavefield, verifying the correctness and effectiveness of the qP wave equations and qP. wave elliptical decomposition equations constructed in this paper. Then, we choose the BP TTI model to conduct forward modeling of qP waves, and combine the results of stimulation and amplitude analysis of a homogeneous TTI medium, highlighting the advantages and adaptability of qP wave elliptical decomposition equations established in this paper. Lastly, we apply the qP wave elliptical decomposition wave equations derived in this paper to implement reverse time migration imaging for a thrust model and BP TTI model, which verifies feasibility of the equations and its applicability in RTM.
引用
收藏
页码:4447 / 4467
页数:21
相关论文
共 29 条
[1]  
Alkan Erdogan., 2013, Synthesis Lectures on Computational Electromagnetics, V8, P1
[2]   Acoustic approximations for processing in transversely isotropic media [J].
Alkhalifah, T .
GEOPHYSICS, 1998, 63 (02) :623-631
[3]   An acoustic wave equation for anisotropic media [J].
Alkhalifah, T .
GEOPHYSICS, 2000, 65 (04) :1239-1250
[4]   Description of qP-wave propagation in anisotropic media, Part II: Separation of pure-mode scalar waves [J].
Cheng Jiu-Bing ;
Chen Mao-Gen ;
Wang Teng-Fei ;
Kang Wei .
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2014, 57 (10) :3389-3401
[5]   Description of qP-wave propagation in anisotropic media, Part I: Pseudo-pure-mode wave equations [J].
Cheng Jiu-Bing ;
Kang Wei ;
Wang Teng-Fei .
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2013, 56 (10) :3474-3486
[6]   WAVE-FIELD SEPARATION IN 2-DIMENSIONAL ANISOTROPIC MEDIA [J].
DELLINGER, J ;
ETGEN, J .
GEOPHYSICS, 1990, 55 (07) :914-919
[7]   Application of M-PML absorbing boundary conditions to the numerical simulation of wave propagation in anisotropic media. Part II: Stability [J].
Dmitriev, M.N. ;
Lisitsa, V.V. .
Numerical Analysis and Applications, 2012, 5 (01) :36-44
[8]  
Du X., 2005, 75th Annual International Meeting, SEG, Expanded Abstracts, P1930, DOI DOI 10.1190/1.2148083
[9]  
Duveneck E., 2008, 78th Annual International Meeting, SEG, Expanded Abstracts, P2186
[10]   Reverse time migration in tilted transversely isotropic (TTI) media [J].
Fletcher, Robin P. ;
Du, Xiang ;
Fowler, Paul J. .
GEOPHYSICS, 2009, 74 (06) :WCA179-WCA187