Phase field modeling of a glide dislocation transmission across a coherent sliding interface

被引:13
作者
Zheng, Songlin
Ni, Yong [1 ]
He, Linghui
机构
[1] Univ Sci & Technol China, CAS Key Lab Mech Behav & Design Mat, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
multilayer; dislocation; phase field; interface; METALLIC MULTILAYERS; SCREW DISLOCATION; DEFORMATION MECHANISMS; ATOMISTIC SIMULATIONS; SLIPPING INTERFACE; WEAK INTERFACES; COMPOSITES; NANOSCALE; STRENGTH; CRYSTALS;
D O I
10.1088/0965-0393/23/3/035002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Three-dimensional phase field microelasticity modeling and simulation capable of representing core structure and elastic interactions of dislocations are used to study a glide dislocation transmission across a coherent sliding interface in face-centered cubic metals. We investigate the role of the interface sliding process, which is described as the reversible motion of interface dislocation on the interfacial barrier strength to transmission. Numerical results show that a wider transient interface sliding zone develops on the interface with a lower interfacial unstable stacking fault energy to trap the glide dislocation leading to a stronger barrier to transmission. The interface sliding zone shrinks in the case of high applied stress and low mobility for the interfacial dislocation. This indicates that such interfacial barrier strength might be rate dependent. We discuss the calculated interfacial barrier strength for the Cu/Ni interface from the contribution of interface sliding comparable to previous atomistic simulations.
引用
收藏
页数:14
相关论文
共 54 条
[41]   Phase field model of dislocation networks [J].
Shen, C ;
Wang, Y .
ACTA MATERIALIA, 2003, 51 (09) :2595-2610
[42]   Transmission of a screw dislocation across a coherent, non-slipping interface [J].
Shen, Yao ;
Anderson, Peter M. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2007, 55 (05) :956-979
[43]   Transmission of a screw dislocation across a coherent, slipping interface [J].
Shen, Yao ;
Anderson, Peter M. .
ACTA MATERIALIA, 2006, 54 (15) :3941-3951
[44]   INTRINSIC STACKING FAULTS IN BODY-CENTRED CUBIC CRYSTALS [J].
VITEK, V .
PHILOSOPHICAL MAGAZINE, 1968, 18 (154) :773-&
[45]   Atomistic simulations of the shear strength and sliding mechanisms of copper-niobium interfaces [J].
Wang, J. ;
Hoagland, R. G. ;
Hirth, J. P. ;
Misra, A. .
ACTA MATERIALIA, 2008, 56 (13) :3109-3119
[46]   Slip transmission across fcc/bcc interfaces with varying interface shear strengths [J].
Wang, J. ;
Misra, A. ;
Hoagland, R. G. ;
Hirth, J. P. .
ACTA MATERIALIA, 2012, 60 (04) :1503-1513
[47]   The influence of interface shear strength on the glide dislocation-interface interactions [J].
Wang, J. ;
Hoagland, R. G. ;
Liu, X. Y. ;
Misra, A. .
ACTA MATERIALIA, 2011, 59 (08) :3164-3173
[48]   An overview of interface-dominated deformation mechanisms in metallic multilayers [J].
Wang, J. ;
Misra, A. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2011, 15 (01) :20-28
[49]   Atomistic modeling of the interaction of glide dislocations with "weak" interfaces [J].
Wang, J. ;
Hoagland, R. G. ;
Hirth, J. P. ;
Misra, A. .
ACTA MATERIALIA, 2008, 56 (19) :5685-5693
[50]   Nanoscale phase field microelasticity theory of dislocations:: Model and 3D simulations [J].
Wang, YU ;
Jin, YM ;
Cuitiño, AM ;
Khachaturyan, AG .
ACTA MATERIALIA, 2001, 49 (10) :1847-1857