Phase field modeling of a glide dislocation transmission across a coherent sliding interface

被引:13
作者
Zheng, Songlin
Ni, Yong [1 ]
He, Linghui
机构
[1] Univ Sci & Technol China, CAS Key Lab Mech Behav & Design Mat, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
multilayer; dislocation; phase field; interface; METALLIC MULTILAYERS; SCREW DISLOCATION; DEFORMATION MECHANISMS; ATOMISTIC SIMULATIONS; SLIPPING INTERFACE; WEAK INTERFACES; COMPOSITES; NANOSCALE; STRENGTH; CRYSTALS;
D O I
10.1088/0965-0393/23/3/035002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Three-dimensional phase field microelasticity modeling and simulation capable of representing core structure and elastic interactions of dislocations are used to study a glide dislocation transmission across a coherent sliding interface in face-centered cubic metals. We investigate the role of the interface sliding process, which is described as the reversible motion of interface dislocation on the interfacial barrier strength to transmission. Numerical results show that a wider transient interface sliding zone develops on the interface with a lower interfacial unstable stacking fault energy to trap the glide dislocation leading to a stronger barrier to transmission. The interface sliding zone shrinks in the case of high applied stress and low mobility for the interfacial dislocation. This indicates that such interfacial barrier strength might be rate dependent. We discuss the calculated interfacial barrier strength for the Cu/Ni interface from the contribution of interface sliding comparable to previous atomistic simulations.
引用
收藏
页数:14
相关论文
共 54 条
[1]  
Anderson P M, 2001, MULTISCALE FRACTURE
[2]   Dislocation-based deformation mechanisms in metallic nanolaminates [J].
Anderson, PM ;
Foecke, T ;
Hazzledine, PM .
MRS BULLETIN, 1999, 24 (02) :27-33
[3]   A Peierls analysis of the critical stress for transmission of a screw dislocation across a coherent, sliding interface [J].
Anderson, PM ;
Li, ZY .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 319 :182-187
[4]   Overview no. 130 - Size effects in materials due to microstructural and dimensional constraints: A comparative review [J].
Arzt, E .
ACTA MATERIALIA, 1998, 46 (16) :5611-5626
[5]  
Bacon D. J., 1980, PROGR MATERIALS SCI, V23, P51, DOI [DOI 10.1016/0079-6425(80)90007-9, DOI 10.1016/0079-6425(80)90007-9)]
[6]   Dislocation models of interfacial shearing induced by an approaching lattice glide dislocation [J].
Chu, H. J. ;
Wang, J. ;
Beyerlein, I. J. ;
Pan, E. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2013, 41 :1-13
[7]   Structure and strength of multilayers [J].
Clemens, BM ;
Kung, H ;
Barnett, SA .
MRS BULLETIN, 1999, 24 (02) :20-26
[8]  
Demkowicz MJ, 2008, DISCLOC SOLIDS, V14, P141, DOI 10.1016/S1572-4859(07)00003-4
[9]  
Escaig B, 1968, P BATTELLE COLL DISL
[10]  
Friedel J., 1957, Dislocations and Mechanical Properties of Crystals, VNewYork