A RELAXED GRADIENT BASED ALGORITHM FOR SOLVING SYLVESTER EQUATIONS

被引:86
|
作者
Niu, Qiang [1 ]
Wang, Xiang [2 ]
Lu, Lin-Zhang [3 ,4 ]
机构
[1] Xian Jiaotong Liverpool Univ, MPTC, Suzhou 215123, Peoples R China
[2] Nanchang Univ, Dept Math, Nanchang 330047, Peoples R China
[3] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
[4] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Sylvester equation; iterative method; relaxation parameter; IDENTIFICATION;
D O I
10.1002/asjc.328
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
By introducing a relaxation parameter, we derive a relaxed gradient based iterative algorithm for solving Sylvester equations. Theoretical analysis shows that the new method converges under certain assumptions. Comparisons are performed with the original algorithm, and results show that the new method exhibits fast convergence behavior with a wide range of relaxation parameters.
引用
收藏
页码:461 / 464
页数:4
相关论文
共 50 条
  • [31] Solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices
    Ramadan, Mohamed A.
    El-Danaf, Talaat S.
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2015, 37 (03) : 291 - 316
  • [32] Extended conjugate gradient squared and conjugate residual squared methods for solving the generalized coupled Sylvester tensor equations
    Dehdezi, Eisa Khosravi
    Karimi, Saeed
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2021, 43 (03) : 519 - 527
  • [33] Convergence of an iterative method for solving Sylvester matrix equations over reflexive matrices
    Dehghan, Mehdi
    Hajarian, Masoud
    JOURNAL OF VIBRATION AND CONTROL, 2011, 17 (09) : 1295 - 1298
  • [34] Solving stable Sylvester equations via rational iterative schemes
    Benner, Peter
    Quintana-Orti, Enrique S.
    Quintana-Orti, Gregorio
    JOURNAL OF SCIENTIFIC COMPUTING, 2006, 28 (01) : 51 - 83
  • [35] Analysis of an iterative algorithm to solve the generalized coupled Sylvester matrix equations
    Dehghan, Mehdi
    Hajarian, Masoud
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (07) : 3285 - 3300
  • [36] Block Krylov subspace methods for solving large Sylvester equations
    El Guennouni, A
    Jbilou, K
    Riquet, AJ
    NUMERICAL ALGORITHMS, 2002, 29 (1-3) : 75 - 96
  • [37] Block Krylov Subspace Methods for Solving Large Sylvester Equations
    A. El Guennouni
    K. Jbilou
    A.J. Riquet
    Numerical Algorithms, 2002, 29 : 75 - 96
  • [38] Solving Stable Sylvester Equations via Rational Iterative Schemes
    Peter Benner
    Enrique S. Quintana-Ortí
    Gregorio Quintana-Ortí
    Journal of Scientific Computing, 2006, 28 : 51 - 83
  • [39] An alternative extended block Arnoldi method for solving low-rank Sylvester equations
    Abdaoui, I
    Elbouyahyaoui, L.
    Heyouni, M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (08) : 2817 - 2830
  • [40] A Convergence-Enhanced Gradient Neural Network for Solving Sylvester Equation
    Xiao, Lin
    Liao, Bolin
    Luo, Jiawei
    Ding, Lei
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 3910 - 3913