Symmetric and symplectic ERKN methods for oscillatory Hamiltonian systems

被引:26
作者
Chen, Zhaoxia [1 ]
You, Xiong [1 ,2 ]
Shi, Wei [1 ,2 ]
Liu, Zhongli [1 ]
机构
[1] Nanjing Agr Univ, Dept Appl Math, Nanjing 210095, Jiangsu, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210093, Jiangsu, Peoples R China
关键词
Symmetry; Symplecticity; ERKN methods; Hamiltonian systems; KUTTA-NYSTROM METHOD; NUMERICAL-INTEGRATION;
D O I
10.1016/j.cpc.2011.09.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The ERKN methods proposed by H. Yang et al. [Comput. Phys. Comm. 180 (2009) 1777] are an important improvement of J.M. Franco's ARKN methods for perturbed oscillators [J.M. Franco, Comput. Phys. Comm. 147 (2002) 770]. This paper focuses on the symmetry and symplecticity conditions for ERKN methods solving oscillatory Hamiltonian systems. Two examples of symmetric and symplectic ERKN (SSERKN) methods of orders two and four respectively are constructed. The phase and stability properties of the new methods are analyzed. The results of numerical experiments show the robustness and competence of the SSERKN methods compared with some well-known methods in the literature. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 98
页数:13
相关论文
共 24 条
[1]  
[Anonymous], 2008, Numerical Methods for Ordinary Differential Equations
[2]  
[Anonymous], J APPL MATH PHYS
[3]   Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta methods of the Gauss type [J].
Calvo, M. ;
Franco, J. M. ;
Montijano, J. I. ;
Randez, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (01) :387-398
[4]   Structure preservation of exponentially fitted Runge-Kutta methods [J].
Calvo, M. ;
Franco, J. M. ;
Montijano, J. I. ;
Randez, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) :421-434
[5]   THE DEVELOPMENT OF VARIABLE-STEP SYMPLECTIC INTEGRATORS, WITH APPLICATION TO THE 2-BODY PROBLEM [J].
CALVO, MP ;
SANZSERNA, JM .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (04) :936-952
[6]   Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems [J].
Franco, J. M. .
COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (06) :479-492
[7]   New methods for oscillatory systems based on ARKN methods [J].
Franco, J. M. .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (08) :1040-1053
[8]   Exponentially fitted explicit Runge-Kutta-Nystrom methods [J].
Franco, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (01) :1-19
[9]   A 5(3) pair of explicit ARKN methods for the numerical integration of perturbed oscillators [J].
Franco, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 161 (02) :283-293
[10]   Runge-Kutta-Nystrom methods adapted to the numerical integration of perturbed oscillators [J].
Franco, JM .
COMPUTER PHYSICS COMMUNICATIONS, 2002, 147 (03) :770-787