ALMOST SURE WELL-POSEDNESS OF THE CUBIC NONLINEAR SCHRODINGER EQUATION BELOW L2(T)

被引:98
作者
Colliander, James [1 ]
Oh, Tadahiro [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
INVARIANT-MEASURES; ILL-POSEDNESS; CAUCHY; KDV; MODULATION;
D O I
10.1215/00127094-1507400
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem for the 1-dimensional periodic cubic nonlinear Schrodinger (NLS) equation with initial data below L-2. In particular, we exhibit nonlinear smoothing when the initial data are randomized. Then, we prove local well-posedness of the NLS equation almost surely for the initial data in the support of the canonical Gaussian measures on H-s(T) for each s > -1/3, and global well-posedness for each s> -1/2.
引用
收藏
页码:367 / 414
页数:48
相关论文
共 42 条
[1]  
[Anonymous], 1991, ERGEB MATH GRENZGEB
[2]  
[Anonymous], 1997, Cambridge Tracts in Mathematics
[3]   Modulation spaces, Wiener amalgam spaces, and Brownian motions [J].
Benyi, Arpad ;
Oh, Tadahiro .
ADVANCES IN MATHEMATICS, 2011, 228 (05) :2943-2981
[4]   Planck's law and light quantum hypothesis [J].
Bose .
ZEITSCHRIFT FUR PHYSIK, 1924, 26 :178-181
[5]   Invariant measures for the 2D-defocusing nonlinear Schrodinger equation [J].
Bourgain, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (02) :421-445
[6]   PERIODIC NONLINEAR SCHRODINGER-EQUATION AND INVARIANT-MEASURES [J].
BOURGAIN, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 166 (01) :1-26
[7]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[8]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107
[9]  
Bourgain J., 1999, IAS PARK CITY MATH S, V5, P3
[10]  
Burq N, 2002, MATH RES LETT, V9, P323