Optimal model averaging for divergent-dimensional Poisson regressions

被引:17
作者
Zou, Jiahui [1 ]
Wang, Wendun [2 ,3 ]
Zhang, Xinyu [4 ,5 ]
Zou, Guohua [6 ]
机构
[1] Capital Univ Econ & Business, Sch Stat, Beijing, Peoples R China
[2] Erasmus Univ, Econometr Inst, NL-3062 PA Amsterdam, Netherlands
[3] Tinbergen Inst, Amsterdam, Netherlands
[4] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
[5] Beijing Acad Artificial Intelligence, Beijing, Peoples R China
[6] Capital Normal Univ, Sch Math Sci, Beijing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Asymptotic optimality; consistency; divergent dimension; model averaging; Poisson regression; MAXIMUM-LIKELIHOOD-ESTIMATION; GENERALIZED LINEAR-MODELS; LEAST-SQUARES; SELECTION; RISK;
D O I
10.1080/07474938.2022.2047508
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper proposes a new model averaging method to address model uncertainty in Poisson regressions, allowing the dimension of covariates to increase with the sample size. We derive an unbiased estimator of the Kullback-Leibler (KL) divergence to choose averaging weights. We show that when all candidate models are misspecified, the proposed estimate is asymptotically optimal by achieving the least KL divergence among all possible averaging estimators. In another situation where correct models exist in the model space, our method can produce consistent coefficient estimates. We apply the proposed techniques to study the determinants and predict corporate innovation outcomes measured by the number of patents.
引用
收藏
页码:775 / 805
页数:31
相关论文
共 47 条
  • [1] A MODEL OF GROWTH THROUGH CREATIVE DESTRUCTION
    AGHION, P
    HOWITT, P
    [J]. ECONOMETRICA, 1992, 60 (02) : 323 - 351
  • [2] A WEIGHT-RELAXED MODEL AVERAGING APPROACH FOR HIGH-DIMENSIONAL GENERALIZED LINEAR MODELS
    Ando, Tomohiro
    Li, Ker-Chau
    [J]. ANNALS OF STATISTICS, 2017, 45 (06) : 2654 - 2679
  • [3] A Model-Averaging Approach for High-Dimensional Regression
    Ando, Tomohiro
    Li, Ker-Chau
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (505) : 254 - 265
  • [4] Least squares after model selection in high-dimensional sparse models
    Belloni, Alexandre
    Chernozhukov, Victor
    [J]. BERNOULLI, 2013, 19 (02) : 521 - 547
  • [5] VALID POST-SELECTION INFERENCE
    Berk, Richard
    Brown, Lawrence
    Buja, Andreas
    Zhang, Kai
    Zhao, Linda
    [J]. ANNALS OF STATISTICS, 2013, 41 (02) : 802 - 837
  • [6] Model selection: An integral part of inference
    Buckland, ST
    Burnham, KP
    Augustin, NH
    [J]. BIOMETRICS, 1997, 53 (02) : 603 - 618
  • [7] Asymptotic post-selection inference for the Akaike information criterion
    Charkhi, Ali
    Claeskens, Gerda
    [J]. BIOMETRIKA, 2018, 105 (03) : 645 - 664
  • [8] MINIMUM MEAN SQUARED ERROR MODEL AVERAGING IN LIKELIHOOD MODELS
    Charkhi, Ali
    Claeskens, Gerda
    Hansen, Bruce E.
    [J]. STATISTICA SINICA, 2016, 26 (02) : 809 - 840
  • [9] POISSON APPROXIMATION FOR DEPENDENT TRIALS
    CHEN, LHY
    [J]. ANNALS OF PROBABILITY, 1975, 3 (03) : 534 - 545
  • [10] Chen LHY, 2011, PROBAB APPL SER, P1, DOI 10.1007/978-3-642-15007-4