Optimal model averaging for divergent-dimensional Poisson regressions
被引:17
作者:
Zou, Jiahui
论文数: 0引用数: 0
h-index: 0
机构:
Capital Univ Econ & Business, Sch Stat, Beijing, Peoples R ChinaCapital Univ Econ & Business, Sch Stat, Beijing, Peoples R China
Zou, Jiahui
[1
]
Wang, Wendun
论文数: 0引用数: 0
h-index: 0
机构:
Erasmus Univ, Econometr Inst, NL-3062 PA Amsterdam, Netherlands
Tinbergen Inst, Amsterdam, NetherlandsCapital Univ Econ & Business, Sch Stat, Beijing, Peoples R China
Wang, Wendun
[2
,3
]
Zhang, Xinyu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
Beijing Acad Artificial Intelligence, Beijing, Peoples R ChinaCapital Univ Econ & Business, Sch Stat, Beijing, Peoples R China
Zhang, Xinyu
[4
,5
]
Zou, Guohua
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Beijing, Peoples R ChinaCapital Univ Econ & Business, Sch Stat, Beijing, Peoples R China
Zou, Guohua
[6
]
机构:
[1] Capital Univ Econ & Business, Sch Stat, Beijing, Peoples R China
[2] Erasmus Univ, Econometr Inst, NL-3062 PA Amsterdam, Netherlands
[3] Tinbergen Inst, Amsterdam, Netherlands
[4] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
[5] Beijing Acad Artificial Intelligence, Beijing, Peoples R China
[6] Capital Normal Univ, Sch Math Sci, Beijing, Peoples R China
This paper proposes a new model averaging method to address model uncertainty in Poisson regressions, allowing the dimension of covariates to increase with the sample size. We derive an unbiased estimator of the Kullback-Leibler (KL) divergence to choose averaging weights. We show that when all candidate models are misspecified, the proposed estimate is asymptotically optimal by achieving the least KL divergence among all possible averaging estimators. In another situation where correct models exist in the model space, our method can produce consistent coefficient estimates. We apply the proposed techniques to study the determinants and predict corporate innovation outcomes measured by the number of patents.
机构:
Univ Melbourne, Melbourne Business Sch, Carlton, Vic 3053, AustraliaUniv Melbourne, Melbourne Business Sch, Carlton, Vic 3053, Australia
Ando, Tomohiro
Li, Ker-Chau
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
Acad Sinica, Inst Stat Sci, Taipei 11529, TaiwanUniv Melbourne, Melbourne Business Sch, Carlton, Vic 3053, Australia
机构:
Keio Univ, Grad Sch Business Adm, Kanagawa, JapanKeio Univ, Grad Sch Business Adm, Kanagawa, Japan
Ando, Tomohiro
Li, Ker-Chau
论文数: 0引用数: 0
h-index: 0
机构:
Acad Sinica, Inst Stat Sci, Taipei, Taiwan
Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USAKeio Univ, Grad Sch Business Adm, Kanagawa, Japan
机构:
Univ Melbourne, Melbourne Business Sch, Carlton, Vic 3053, AustraliaUniv Melbourne, Melbourne Business Sch, Carlton, Vic 3053, Australia
Ando, Tomohiro
Li, Ker-Chau
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
Acad Sinica, Inst Stat Sci, Taipei 11529, TaiwanUniv Melbourne, Melbourne Business Sch, Carlton, Vic 3053, Australia
机构:
Keio Univ, Grad Sch Business Adm, Kanagawa, JapanKeio Univ, Grad Sch Business Adm, Kanagawa, Japan
Ando, Tomohiro
Li, Ker-Chau
论文数: 0引用数: 0
h-index: 0
机构:
Acad Sinica, Inst Stat Sci, Taipei, Taiwan
Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USAKeio Univ, Grad Sch Business Adm, Kanagawa, Japan