On operators preserving James' orthogonality

被引:34
作者
Turnsek, A [1 ]
机构
[1] Univ Ljubljana, Fac Mech Engn, Ljubljana 1000, Slovenia
关键词
James' orthogonality; linear preserver; numerical range;
D O I
10.1016/j.laa.2005.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterise isometries and coisometries B(H) in terms of James' orthogonality. As a consequence we obtain a characterisation of surjective linear or conjugate linear mappings phi : B(H) -> B(H) that preserve James' orthogonality in both directions. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:189 / 195
页数:7
相关论文
共 12 条
[1]   Orthogonality of matrices and some distance problems [J].
Bhatia, R ;
Semrl, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 287 (1-3) :77-85
[2]  
Bresar M., 1997, Banach Center Publ., V38, P49
[3]  
Gustafson K. E., 1997, Numerical range
[4]   Some general techniques on linear preserver problems [J].
Guterman, A ;
Li, CK ;
Semrl, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 315 (1-3) :61-81
[5]   Linear rank and corank preserving maps on B(H) and an application to *-semigroup isomorphisms of operator ideals [J].
Gyory, M ;
Molnar, L ;
Semrl, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 280 (2-3) :253-266
[6]  
JAMES RC, 1947, T AM MATH SOC, V61, P265
[7]   Linear maps on selfadjoint operators preserving invertibility, positive definiteness, numerical range [J].
Li, CK ;
Rodman, L ;
Semrl, P .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (02) :216-228
[8]   LINEAR PRESERVER PROBLEMS - A BRIEF INTRODUCTION AND SOME SPECIAL TECHNIQUES [J].
LI, CK ;
TSING, NK .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 162 :217-235
[9]   Orthogonality preserving transformations on indefinite inner product spaces:: Generalization of Uhlhorn's version of Wigner's theorem [J].
Molnár, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 194 (02) :248-262
[10]   Two characterisations of additive *-automorphisms of B(H) [J].
Molnar, L .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (03) :391-400