Robustness Against Adversarial Attacks in Neural Networks Using Incremental Dissipativity

被引:3
|
作者
Aquino, Bernardo [1 ]
Rahnama, Arash [2 ]
Seiler, Peter [3 ]
Lin, Lizhen [4 ]
Gupta, Vijay [1 ]
机构
[1] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46656 USA
[2] Amazon Inc, New York, NY 10001 USA
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[4] Univ Notre Dame, Dept Appl Computat Math & Stat, Notre Dame, IN 46656 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2022年 / 6卷
关键词
Biological neural networks; Robustness; Training; Perturbation methods; Standards; Neurons; Optimization; Adversarial Attacks; Deep Neural Networks; Robust Design; Passivity Theory; Spectral Regularization;
D O I
10.1109/LCSYS.2022.3150719
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adversarial examples can easily degrade the classification performance in neural networks. Empirical methods for promoting robustness to such examples have been proposed, but often lack both analytical insights and formal guarantees. Recently, some robustness certificates have appeared in the literature based on system theoretic notions. This letter proposes an incremental dissipativity-based robustness certificate for neural networks in the form of a linear matrix inequality for each layer. We also propose a sufficient spectral norm bound for this certificate which is scalable to neural networks with multiple layers. We demonstrate the improved performance against adversarial attacks on a feed-forward neural network trained on MNIST and an Alexnet trained using CIFAR-10.
引用
收藏
页码:2341 / 2346
页数:6
相关论文
共 50 条
  • [1] On the Robustness of Bayesian Neural Networks to Adversarial Attacks
    Bortolussi, Luca
    Carbone, Ginevra
    Laurenti, Luca
    Patane, Andrea
    Sanguinetti, Guido
    Wicker, Matthew
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 14
  • [2] Improving Robustness Against Adversarial Attacks with Deeply Quantized Neural Networks
    Ayaz, Ferheen
    Zakariyya, Idris
    Cano, Jose
    Keoh, Sye Loong
    Singer, Jeremy
    Pau, Danilo
    Kharbouche-Harrari, Mounia
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [3] Robustness Against Adversarial Attacks Using Dimensionality
    Chattopadhyay, Nandish
    Chatterjee, Subhrojyoti
    Chattopadhyay, Anupam
    SECURITY, PRIVACY, AND APPLIED CRYPTOGRAPHY ENGINEERING, SPACE 2021, 2022, 13162 : 226 - 241
  • [4] Robustness of Spiking Neural Networks Based on Time-to-First-Spike Encoding Against Adversarial Attacks
    Nomura, Osamu
    Sakemi, Yusuke
    Hosomi, Takeo
    Morie, Takashi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (09) : 3640 - 3644
  • [5] RobCaps: Evaluating the Robustness of Capsule Networks against Affine Transformations and Adversarial Attacks
    Marchisio, Alberto
    De Marco, Antonio
    Colucci, Alessio
    Martina, Maurizio
    Shafique, Muhammad
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [6] Defending Against Adversarial Attacks in Deep Neural Networks
    You, Suya
    Kuo, C-C Jay
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS, 2019, 11006
  • [7] Exploring the Impact of Conceptual Bottlenecks on Adversarial Robustness of Deep Neural Networks
    Rasheed, Bader
    Abdelhamid, Mohamed
    Khan, Adil
    Menezes, Igor
    Khatak, Asad Masood
    IEEE ACCESS, 2024, 12 : 131323 - 131335
  • [8] Robustness and Transferability of Adversarial Attacks on Different Image Classification Neural Networks
    Smagulova, Kamilya
    Bacha, Lina
    Fouda, Mohammed E.
    Kanj, Rouwaida
    Eltawil, Ahmed
    ELECTRONICS, 2024, 13 (03)
  • [9] Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks
    Uchendu, Adaku
    Campoy, Daniel
    Menart, Christopher
    Hildenbrandt, Alexandra
    2021 IEEE FOURTH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE 2021), 2021, : 72 - 80
  • [10] Detect Adversarial Attacks Against Deep Neural Networks With GPU Monitoring
    Zoppi, Tommaso
    Ceccarelli, Andrea
    IEEE ACCESS, 2021, 9 : 150579 - 150591