Curvature decompositions on Einstein four-manifolds

被引:0
作者
Wu, Peng [1 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200433, Peoples R China
来源
NEW YORK JOURNAL OF MATHEMATICS | 2017年 / 23卷
关键词
POSITIVE CURVATURE; MANIFOLDS; OPERATOR;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For Einstein four-manifolds with positive scalar curvature, we investigate relations among various positivity conditions on the curvature tensor, some of which are of great importance in the study of the Ricci flow. These relations suggest possible new ideas to study the well-known rigidity conjecture for positively curved Einstein four-manifolds.
引用
收藏
页码:1739 / 1749
页数:11
相关论文
共 17 条
[1]  
[Anonymous], THESIS
[2]  
[Anonymous], 1987, ERGEBNISSE MATH IHRE
[3]  
Berger M., 1961, Ann. Mat. Pura Appl., V53, P89
[4]  
Böhm C, 2008, ANN MATH, V167, P1079
[5]   EINSTEIN MANIFOLDS WITH NONNEGATIVE ISOTROPIC CURVATURE ARE LOCALLY SYMMETRIC [J].
Brendle, Simon .
DUKE MATHEMATICAL JOURNAL, 2010, 151 (01) :1-21
[6]  
Chen H., 1991, ANN GLOB ANAL GEOM, V9, P161
[7]   On Einstein four-manifolds [J].
de Araujo Costa, É .
JOURNAL OF GEOMETRY AND PHYSICS, 2004, 51 (02) :244-255
[8]  
DERDZINSKI A, 1983, COMPOS MATH, V49, P405
[9]   On Einstein manifolds of positive sectional curvature [J].
Gursky, MJ ;
LeBrun, C .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1999, 17 (04) :315-328
[10]  
HAMILTON RS, 1986, J DIFFER GEOM, V24, P153