In situ investigation of helium fuzz growth on tungsten in relation to ion flux, fluence, surface temperature and ion energy using infrared imaging in PSI-2

被引:12
作者
Moeller, S. [1 ]
Kachko, O. [1 ]
Rasinski, M. [1 ]
Kreter, A. [1 ]
Linsmeier, Ch [1 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res Plasma Phys, Julich, Germany
关键词
tungsten; fuzz; surface morphology; plasma surface interaction; infrared thermography; PSI-2; in situ;
D O I
10.1088/1402-4896/aa8a0a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Tungsten is a candidate material for plasma-facing components in nuclear fusion reactors. In operation it will face temperatures > 800 K together with an influx of helium ions. Previously, the evolution of special surface nanostructures called fuzz was found under these conditions in a limited window of surface temperature, ion flux and ion energy. Fuzz potentially leads to lower heat load tolerances, enhanced erosion and dust formation, hence should be avoided in a fusion reactor. Here the fuzz growth is reinvestigated in situ during its growth by considering its impact on the surfaces infrared emissivity at 4 mu m wavelength with an infrared camera in the linear plasma device PSI-2. A hole in the surface serves as an emissivity reference to calibrate fuzz thickness versus infrared emissivity. Among new data on the above mentioned relations, a lower fuzz growth threshold of 815 +/- 24 K is found. Fuzz is seen to grow on rough and polished surfaces and even on the hole's side walls alike. Literature scalings for thickness, flux and time relations of the fuzz growth rate could not be reproduced, but for the temperature scaling a good agreement to the Arrhenius equation was found.
引用
收藏
页数:6
相关论文
共 10 条
[1]   Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions [J].
Baldwin, M. J. ;
Doerner, R. P. .
NUCLEAR FUSION, 2008, 48 (03)
[2]  
Brezinsek S., 2016, NUCL MAT ENERGY
[3]   A NEW DETERMINATION OF THE EMISSIVITY OF TUNGSTEN RIBBON [J].
DEVOS, JC .
PHYSICA, 1954, 20 (09) :690-&
[4]  
DMITRIEV VD, 1965, ZH PRIKL SPEKTROSK, V2, P481
[5]   Measurement of heat diffusion across fuzzy tungsten layer [J].
Kajita, Shin ;
Yagi, Takashi ;
Kobayashi, Kenichi ;
Tokitani, Masayuki ;
Ohno, Noriyasu .
RESULTS IN PHYSICS, 2016, 6 :877-878
[6]   LINEAR PLASMA DEVICE PSI-2 FOR PLASMA-MATERIAL INTERACTION STUDIES [J].
Kreter, A. ;
Brandt, C. ;
Huber, A. ;
Kraus, S. ;
Moeller, S. ;
Reinhart, M. ;
Schweer, B. ;
Sergienko, G. ;
Unterberg, B. .
FUSION SCIENCE AND TECHNOLOGY, 2015, 68 (01) :8-14
[7]   Flux threshold measurements of He-ion beam induced nanofuzz formation on hot tungsten surfaces [J].
Meyer, F. W. ;
Hijazi, H. ;
Bannister, M. E. ;
Unocic, K. A. ;
Garrison, L. M. ;
Parish, C. M. .
PHYSICA SCRIPTA, 2016, T167
[8]   Dynamic outgassing of deuterium, helium and nitrogen from plasma-facing materials under DEMO relevant conditions [J].
Moeller, S. ;
Matveev, D. ;
Martynova, Y. ;
Unterberg, B. ;
Rasinski, M. ;
Wegener, T. ;
Kreter, A. ;
Linsmeier, Ch. .
NUCLEAR FUSION, 2017, 57 (01)
[9]   Tungsten 'fuzz' growth re-examined: the dependence on ion fluence in non-erosive and erosive helium plasma [J].
Petty, T. J. ;
Baldwin, M. J. ;
Hasan, M. I. ;
Doerner, R. P. ;
Bradley, J. W. .
NUCLEAR FUSION, 2015, 55 (09)
[10]   Comparison of tungsten nano-tendrils grown in Alcator C-Mod and linear plasma devices [J].
Wright, G. M. ;
Brunner, D. ;
Baldwin, M. J. ;
Bystrov, K. ;
Doerner, R. P. ;
Labombard, B. ;
Lipschultz, B. ;
De Temmerman, G. ;
Terry, J. L. ;
Whyte, D. G. ;
Woller, K. B. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 438 :S84-S89