A semantic modeling method for social network short text based on spatial and temporal characteristics

被引:30
作者
Kou, Feifei [1 ]
Du, Junping [1 ]
Lin, Zijian [1 ]
Liang, Meiyu [1 ]
Li, Haisheng [2 ]
Shi, Lei [1 ]
Yang, Congxian [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing Key Lab Intelligent Telecommun Software &, Beijing 100876, Peoples R China
[2] Beijing Technol & Business Univ, Sch Comp & Informat Engn, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Short text; Spatiotemporal characteristics; Semantic analysis; Topic model; EVENT DETECTION; CLASSIFICATION; STREAMS;
D O I
10.1016/j.jocs.2017.10.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Given the social network short text native sparsity, semantic inference becomes an infeasible task for conventional topic models. By exploiting the spatial and temporal characteristics of social network data, we propose a social network short text semantic modeling method, named by Spatial and Temporal Topic Model (STTM). To further overcome short text sparsity, STTM leverages co-occurrence word-word pair to reduce the sparsity problem, and moreover, it incorporates time information into the process of topics modeling in order to generate topics with higher quality. Experimental results over four real social media datasets verify the effectiveness of STTM. Published by Elsevier B.V.
引用
收藏
页码:281 / 293
页数:13
相关论文
共 49 条
[1]  
[Anonymous], 1999, MODERN INFORM RETRIE
[2]  
[Anonymous], 2008, Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM '08
[3]   A general framework to expand short text for topic modeling [J].
Bicalho, Paulo ;
Pita, Marcelo ;
Pedrosa, Gabriel ;
Lacerda, Anisio ;
Pappa, Gisele L. .
INFORMATION SCIENCES, 2017, 393 :66-81
[4]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[5]   A model to support design and development of multiple-social-network applications [J].
Buccafurri, Francesco ;
Lax, Gianluca ;
Nicolazzo, Serena ;
Nocera, Antonino .
INFORMATION SCIENCES, 2016, 331 :99-119
[6]   What are Popular: Exploring Twitter Features for Event Detection, Tracking and Visualization [J].
Cai, Hongyun ;
Yang, Yang ;
Li, Xuefei ;
Huang, Zi .
MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, :89-98
[7]  
Chen T, 2015, AAAI CONF ARTIF INTE, P30
[8]   Search engine reinforced semi-supervised classification and graph-based summarization of microblogs [J].
Chen, Yan ;
Zhang, Xiaoming ;
Li, Zhoujun ;
Ng, Jun-Ping .
NEUROCOMPUTING, 2015, 152 :274-286
[9]   BTM: Topic Modeling over Short Texts [J].
Cheng, Xueqi ;
Yan, Xiaohui ;
Lan, Yanyan ;
Guo, Jiafeng .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (12) :2928-2941
[10]   Sifting robotic from organic text: A natural language approach for detecting automation on Twitter [J].
Clark, Eric M. ;
Williams, Jake Ryland ;
Jones, Chris A. ;
Galbraith, Richard A. ;
Danforth, Christopher M. ;
Dodds, Peter Sheridan .
JOURNAL OF COMPUTATIONAL SCIENCE, 2016, 16 :1-7