Stable adaptive probabilistic Takagi-Sugeno-Kang fuzzy controller for dynamic systems with uncertainties

被引:14
作者
Shaheen, Omar [1 ]
El-Nagar, Ahmad M. [1 ]
El-Bardini, Mohammad [1 ]
El-Rabaie, Nabila M. [1 ]
机构
[1] Menoufia Univ, Fac Elect Engn, Dept Ind Elect & Control Engn, Menof 32852, Egypt
关键词
Probabilistic fuzzy system; Probabilistic TSK fuzzy controller; Lyapunov theory; Uncertain systems; PID CONTROLLER; INVERTED PENDULUM; LOGIC SYSTEM; DESIGN;
D O I
10.1016/j.isatra.2019.08.035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, an adaptive probabilistic Takagi-Sugeno-Kang fuzzy PID (APTSKF-PID) scheme is developed to control nonlinear systems. The proposed controller merges the features of the TSK fuzzy logic system, which possess a superior performance in system size and learning accuracy than the Mamdani-type fuzzy systems and the probabilistic processing method in nonlinear control, which handles the system uncertainties. To achieve controlled system stability, Lyapunov function is used for tuning the controller parameters. Tuning the probability parameters provides an extra degree of flexibility in controller design and improves the control performance. Furthermore, to ensure the effectiveness of the developed scheme for engineering applications, the proposed control technology is introduced to control nonlinear dynamical plants and its performance is compared with existing schemes. Simulation tasks indicate that the efficiency of APTSKF-PID scheme has high superiority over the other controller for external disturbances, random noise and a large scope of system uncertainties. (C) 2019 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:271 / 283
页数:13
相关论文
共 50 条
[1]   Multilabel Takagi-Sugeno-Kang Fuzzy System [J].
Lou, Qiongdan ;
Deng, Zhaohong ;
Xiao, Zhiyong ;
Choi, Kup-Sze ;
Wang, Shitong .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (09) :3410-3425
[2]   Suppression of Structural Vibrations of an Overhead Crane Using Takagi-Sugeno-Kang Fuzzy Controller [J].
Tolochko, Olga ;
Bazhutin, Denys .
2020 XI INTERNATIONAL CONFERENCE ON ELECTRICAL POWER DRIVE SYSTEMS (ICEPDS), 2020,
[3]   Online identification of evolving Takagi-Sugeno-Kang fuzzy models for crane systems [J].
Precup, Radu-Emil ;
Filip, Horatiu-Ioan ;
Radac, Mircea-Bogdan ;
Petriu, Emil M. ;
Preitl, Stefan ;
Dragos, Claudia-Adina .
APPLIED SOFT COMPUTING, 2014, 24 :1155-1163
[4]   Deep Takagi-Sugeno-Kang Fuzzy Classifier With Shared Linguistic Fuzzy Rules [J].
Zhang, Yuanpeng ;
Ishibuchi, Hisao ;
Wang, Shitong .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (03) :1535-1549
[5]   ADMTSK: A High-Dimensional Takagi-Sugeno-Kang Fuzzy System Based on Adaptive Dombi T-Norm [J].
Xue, Guangdong ;
Hu, Liangjian ;
Wang, Jian ;
Ablameyko, Sergey .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2025, 33 (06) :1767-1780
[6]   A CENTER MANIFOLD THEORY-BASED APPROACH TO THE STABILITY ANALYSIS OF STATE FEEDBACK TAKAGI-SUGENO-KANG FUZZY CONTROL SYSTEMS [J].
Precup, Radu-Emil ;
Preitl, Stefan ;
Petriu, Emil M. ;
Roman, Raul-Cristian ;
Bojan-Dragos, Claudia-Adina ;
Hedrea, Elena-Lorena ;
Szedlak-Stinean, Alexandra-Iulia .
FACTA UNIVERSITATIS-SERIES MECHANICAL ENGINEERING, 2020, 18 (02) :189-204
[7]   Takagi-Sugeno-Kang type probabilistic fuzzy neural network control for grid-connected LiFePO4 battery storage system [J].
Lin, Faa-Jeng ;
Huang, Ming-Shi ;
Hung, Ying-Chih ;
Kuan, Chi-Hsuan ;
Wang, Sheng-Long ;
Lee, Yih-Der .
IET POWER ELECTRONICS, 2013, 6 (06) :1029-1040
[8]   Interval Type-2 Takagi-Sugeno-Kang Fuzzy Logic Approach for Three-Tank System Modeling [J].
Maalej, Imen ;
Rekik, Chokri ;
Ben Halima Abid, Donia ;
Derbel, Nabil .
2014 IEEE 23RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2014, :144-149
[9]   Nature-inspired optimal tuning of input membership functions of Takagi-Sugeno-Kang fuzzy models for Anti-lock Braking Systems [J].
Precup, Radu-Emil ;
Sabau, Marius-Csaba ;
Petriu, Emil M. .
APPLIED SOFT COMPUTING, 2015, 27 :575-589
[10]   A Fuzzy Iterative Learning Preview Controller for Takagi-Sugeno Fuzzy Systems [J].
Li, Li ;
Wu, Jiang ;
Lu, Yanrong .
INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2025,