Stable adaptive probabilistic Takagi-Sugeno-Kang fuzzy controller for dynamic systems with uncertainties

被引:12
|
作者
Shaheen, Omar [1 ]
El-Nagar, Ahmad M. [1 ]
El-Bardini, Mohammad [1 ]
El-Rabaie, Nabila M. [1 ]
机构
[1] Menoufia Univ, Fac Elect Engn, Dept Ind Elect & Control Engn, Menof 32852, Egypt
关键词
Probabilistic fuzzy system; Probabilistic TSK fuzzy controller; Lyapunov theory; Uncertain systems; PID CONTROLLER; INVERTED PENDULUM; LOGIC SYSTEM; DESIGN;
D O I
10.1016/j.isatra.2019.08.035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, an adaptive probabilistic Takagi-Sugeno-Kang fuzzy PID (APTSKF-PID) scheme is developed to control nonlinear systems. The proposed controller merges the features of the TSK fuzzy logic system, which possess a superior performance in system size and learning accuracy than the Mamdani-type fuzzy systems and the probabilistic processing method in nonlinear control, which handles the system uncertainties. To achieve controlled system stability, Lyapunov function is used for tuning the controller parameters. Tuning the probability parameters provides an extra degree of flexibility in controller design and improves the control performance. Furthermore, to ensure the effectiveness of the developed scheme for engineering applications, the proposed control technology is introduced to control nonlinear dynamical plants and its performance is compared with existing schemes. Simulation tasks indicate that the efficiency of APTSKF-PID scheme has high superiority over the other controller for external disturbances, random noise and a large scope of system uncertainties. (C) 2019 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:271 / 283
页数:13
相关论文
共 50 条
  • [1] Takagi-sugeno-kang fuzzy systems with dynamic rule weights
    Zhang, Yuanpeng
    Chung, Fu-Lai
    Wang, Shitong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (06) : 8535 - 8550
  • [2] Design of adaptive Takagi-Sugeno-Kang fuzzy models
    Kukolj, Dragan
    Applied Soft Computing Journal, 2002, 2 (02): : 89 - 103
  • [3] Stability Analysis of Nonlinear Dynamic Systems by Nonlinear Takagi-Sugeno-Kang Fuzzy Systems
    Namadchian, Zahra
    Zare, Assef
    Namadchian, Ali
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2014, 136 (02):
  • [4] Bayesian Takagi-Sugeno-Kang Fuzzy Classifier
    Gu, Xiaoqing
    Chung, Fu-Lai
    Wang, Shitong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (06) : 1655 - 1671
  • [5] Multilabel Takagi-Sugeno-Kang Fuzzy System
    Lou, Qiongdan
    Deng, Zhaohong
    Xiao, Zhiyong
    Choi, Kup-Sze
    Wang, Shitong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (09) : 3410 - 3425
  • [6] Real time adaptive probabilistic recurrent Takagi-Sugeno-Kang fuzzy neural network proportional-integral-derivative controller for nonlinear systems
    Khater, A. Aziz
    Gaballah, Eslam M.
    El-Bardin, Mohammad
    El-Nagar, Ahmad M.
    ISA TRANSACTIONS, 2024, 152 : 191 - 207
  • [7] Takagi-sugeno-kang fuzzy controller design for nonlinear systems using the scaling gain adaptation
    Tsai P.-S.
    Wu T.-F.
    Hu N.-T.
    Chen J.-Y.
    Wu, Ter-Feng (tfwu@niu.edu.tw), 1600, Computer Society of the Republic of China (28): : 114 - 121
  • [8] A hybrid adaptive granular approach to Takagi-Sugeno-Kang fuzzy rule discovery
    Bemani-N, Alireza
    Akbarzadeh-T, M. -R.
    APPLIED SOFT COMPUTING, 2019, 81
  • [9] Suppression of Structural Vibrations of an Overhead Crane Using Takagi-Sugeno-Kang Fuzzy Controller
    Tolochko, Olga
    Bazhutin, Denys
    2020 XI INTERNATIONAL CONFERENCE ON ELECTRICAL POWER DRIVE SYSTEMS (ICEPDS), 2020,
  • [10] Online identification of evolving Takagi-Sugeno-Kang fuzzy models for crane systems
    Precup, Radu-Emil
    Filip, Horatiu-Ioan
    Radac, Mircea-Bogdan
    Petriu, Emil M.
    Preitl, Stefan
    Dragos, Claudia-Adina
    APPLIED SOFT COMPUTING, 2014, 24 : 1155 - 1163