Crystal structure and properties of CYP231A2 from the thermoacidophilic Archaeon Picrophilus torridus

被引:22
作者
Ho, Winny W. [1 ]
Li, Huiying [1 ]
Nishida, Clinton R. [2 ]
de Montellano, Paul R. Ortiz [2 ]
Poulos, Thomas L. [1 ]
机构
[1] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA
[2] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA
关键词
D O I
10.1021/bi702240k
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The crystal structure of a cytochrome P450 from the thermoacidophile Picrophilus torridus, CYP231A2 (PTO1399), has been solved. This structure reveals a wide open substrate access channel. To better understand ligand-induced structural transitions in CYP231A2, protein-ligand interactions were investigated using 4-phenylimidazole. Comparison of the ligand-free and -bound CYP231A2 structures shows conformational changes where the F and G helices swing as a single rigid body about a pivot point at the N-terminal end of the F helix, allowing the F helix region to dip toward the heme, resulting in closer contacts with the ligand. Thermal melting data illustrate that the melting temperature for CYP231A2 increases nearly 10 degrees C upon ligand binding, thus illustrating that the closed conformation is substantially more stable. Furthermore, spectroscopic data indicate that the active site is stable at pH 4.5, although, unusually, the thiolate ligand to the iron can be reversibly protonated. CYP231A2 does not exhibit structural features normally associated with thermophilic proteins such as an increase in salt bridge networks or extensive aromatic clustering. The increase in thermal stability instead is best correlated with the smaller size and shorter loops in CYP231A2 compared to other P450s.
引用
收藏
页码:2071 / 2079
页数:9
相关论文
共 41 条
[1]   Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT [J].
Blanc, E ;
Roversi, P ;
Vonrhein, C ;
Flensburg, C ;
Lea, SM ;
Bricogne, G .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2210-2221
[2]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[3]   The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota [J].
Chen, LM ;
Brügger, K ;
Skovgaard, M ;
Redder, P ;
She, QX ;
Torarinsson, E ;
Greve, B ;
Awayez, M ;
Zibat, A ;
Klenk, HP ;
Garrett, RA .
JOURNAL OF BACTERIOLOGY, 2005, 187 (14) :4992-4999
[4]   Density modification for macromolecular phase improvement [J].
Cowtan, KD ;
Zhang, KYJ .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1999, 72 (03) :245-270
[5]   IMPROVEMENT OF MACROMOLECULAR ELECTRON-DENSITY MAPS BY THE SIMULTANEOUS APPLICATION OF REAL AND RECIPROCAL SPACE CONSTRAINTS [J].
COWTAN, KD ;
MAIN, P .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1993, 49 :148-157
[6]   Genome sequence of Picrophilus torridus and its implications for life around pH 0 [J].
Fütterer, O ;
Angelov, A ;
Liesegang, H ;
Gottschalk, G ;
Schleper, C ;
Schepers, B ;
Dock, C ;
Antranikian, G ;
Liebl, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (24) :9091-9096
[7]   Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins [J].
Gromiha, MM ;
Oobatake, M ;
Sarai, A .
BIOPHYSICAL CHEMISTRY, 1999, 82 (01) :51-67
[8]   Electron-density map interpretation [J].
Jones, TA ;
Kjeldgaard, M .
MACROMOLECULAR CRYSTALLOGRAPHY, PT B, 1997, 277 :173-208
[9]   How do thermophilic proteins deal with heat? [J].
Kumar, S ;
Nussinov, R .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2001, 58 (09) :1216-1233
[10]   Factors enhancing protein thermostability [J].
Kumar, S ;
Tsai, CJ ;
Nussinov, R .
PROTEIN ENGINEERING, 2000, 13 (03) :179-191