A Fast Method for Decoding Reed-Solomon Codes on Processors

被引:0
作者
Chen, Yan-Haw [1 ]
Huang, Ching-Fu [1 ]
Chu, Shao-I [2 ]
Lien, Chih-Yuan [2 ]
Kao, Chien-En [2 ]
机构
[1] I Shou Univ, Dept Informat Engn, Kaohsiung 84008, Taiwan
[2] Natl Kaohsiung Univ Appl Sci, Dept Elect Engn, Kaohsiung 807, Taiwan
来源
2014 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING (IIH-MSP 2014) | 2014年
关键词
Finte Field; Horner rule; Reed-Solomon rode; Lookup Table; Syndrome; FINITE; POLYNOMIALS; MULTIPLIERS; ROOTS;
D O I
10.1109/IIH-MSP.2014.79
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an efficient table lookup algorithm for high-throughput decoding of the Reed-Solomon code. The main idea behind this decoding technique is based on the two-term polynomial evaluation. The number of multiplications for the values of the received polynomial is reduced by a factor of two. Moreover, the syndrome evaluation time for the (255, 223, t=16) Reed-Solomon code by using the proposed algorithm is improved by 81.62% as compared to the traditional Homer's rule. Because of the high throughput characteristics, the presented method for computing syndrome in Reed-Solomon codes is readily adaptable for use in many applications such as CDs, VCDs, DVDs, HDTV, and RAID 6.
引用
收藏
页码:293 / 296
页数:4
相关论文
共 15 条
[1]   ON SOLUTION OF ALGEBRAIC EQUATIONS OVER FINITE FIELDS [J].
BERLEKAM.ER ;
RUMSEY, H ;
SOLOMON, G .
INFORMATION AND CONTROL, 1967, 10 (06) :553-&
[2]  
BERLEKAMP E., 2015, Algebraic Coding Theory
[3]   On computing the syndrome polynomial in Reed-Solomon decoder [J].
Costa, E ;
Fedorenko, SV ;
Trifonov, PV .
EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, 2004, 15 (04) :337-342
[4]   IEEE Standard 802.16:: A technical overview of the WirelessMAN™ air interface for broadband wireless access [J].
Eklund, C ;
Marks, RB ;
Stanwood, KL ;
Wang, S .
IEEE COMMUNICATIONS MAGAZINE, 2002, 40 (06) :98-107
[5]   Finding roots of polynomials over finite fields [J].
Fedorenko, SV ;
Trifonov, PV .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2002, 50 (11) :1709-1711
[6]   Bit-parallel finite field multipliers for irreducible trinomials [J].
Imaña, JL ;
Sánchez, JM ;
Tirado, F .
IEEE TRANSACTIONS ON COMPUTERS, 2006, 55 (05) :520-533
[7]   A fast algorithm for the syndrome calculation in algebraic decoding of reed-solomon codes [J].
Lin, Tsung-Ching ;
Truong, T. K. ;
Chen, R. D. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2007, 55 (12) :2240-2244
[8]   Systolic and Non-Systolic Scalable Modular Designs of Finite Field Multipliers for Reed-Solomon Codec [J].
Meher, Pramod Kumar .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2009, 17 (06) :747-757
[9]   Parallel multipliers based on special irreducible pentanomials [J].
Rodríguez-Henríquez, F ;
Koc, QK .
IEEE TRANSACTIONS ON COMPUTERS, 2003, 52 (12) :1535-1542
[10]   Low-energy digit-serial/parallel finite field multipliers [J].
Song, LL ;
Parhi, KK .
JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 1998, 19 (02) :149-166