Investigation of Self-Catalyzed GaAs NW Growth by Monte Carlo Simulation

被引:0
|
作者
Suprunets, Anastasiya G. [1 ]
Vasilenko, Maxim A. [1 ]
Shwartz, Nataliya L. [1 ,2 ]
机构
[1] Novosibirsk State Tech Univ, Novosibirsk, Russia
[2] AV Rzhanov Inst Semicond Phys SB RAS, Novosibirsk, Russia
来源
2014 15TH INTERNATIONAL CONFERENCE OF YOUNG SPECIALISTS ON MICRO/NANOTECHNOLOGIES AND ELECTRON DEVICES (EDM) | 2014年
关键词
GaAs; nanowires; Monte Carlo; simulation; MOLECULAR-BEAM EPITAXY; MBE GROWTH; NANOWIRES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Using a kinetic lattice Monte Carlo model self-catalyzed growth of GaAs nanowire (NW) on GaAs(111) B surface was realized. Dependence of NW morphology on growth parameters was demonstrated. Existence of optimal temperature and gallium/arsenic flux ratio, corresponding to maximal GaAs nanowire growth rate, was shown. NW growth rate was linearly depended on arsenic flux in wide range of arsenic flux intensity. Obtained decreasing dependence of self-catalyzed NW growth rate on initial catalyst drop diameter was less abrupt than for catalytic growth. The optimal growth temperature of self-catalyzed growth was higher than of catalytic growth. Self-catalyzed growth was demonstrated to be more sensitive to gallium/arsenic flux ratio than catalytic one.
引用
收藏
页码:14 / 18
页数:5
相关论文
共 50 条
  • [1] Examination of Self-Catalyzed III-V Nanowire Growth by Monte Carlo Simulation
    Nastovjak, A. G.
    Usenkova, A. G.
    Shwartz, N. L.
    Neizvestny, I. G.
    SEMICONDUCTORS, 2019, 53 (16) : 2106 - 2109
  • [2] Examination of Self-Catalyzed III–V Nanowire Growth by Monte Carlo Simulation
    A. G. Nastovjak
    A. G. Usenkova
    N. L. Shwartz
    I. G. Neizvestny
    Semiconductors, 2019, 53 : 2106 - 2109
  • [3] Reasons of Crystallite Formation during the Self-Catalyzed GaAs Nanowire Growth
    Nastovjak, A. G.
    Shwartz, N. L.
    Emelyanov, E. A.
    Petrushkov, M. O.
    Vasev, A. V.
    Putyato, M. A.
    Preobrazhenskii, V. V.
    SEMICONDUCTORS, 2020, 54 (14) : 1850 - 1853
  • [4] Reasons of Crystallite Formation during the Self-Catalyzed GaAs Nanowire Growth
    A. G. Nastovjak
    N. L. Shwartz
    E. A. Emelyanov
    M. O. Petrushkov
    A. V. Vasev
    M. A. Putyato
    V. V. Preobrazhenskii
    Semiconductors, 2020, 54 : 1850 - 1853
  • [5] Self-catalyzed GaAs Nanowire Growth at Alternate Arsenic Flux
    Shipulin, Pavel, V
    Nastovjak, Alla G.
    Shwartz, Nataliya L.
    2020 21ST INTERNATIONAL CONFERENCE ON YOUNG SPECIALISTS ON MICRO/NANOTECHNOLOGIES AND ELECTRON DEVICES (EDM), 2020, : 32 - 35
  • [6] The role of As species in self-catalyzed growth of GaAs and GaAsSb nanowires
    Koivusalo, Eero
    Hilska, Joonas
    Galeti, Helder V. A.
    Galvao Gobato, Yara
    Guina, Mircea
    Hakkarainen, Teemu
    NANOTECHNOLOGY, 2020, 31 (46)
  • [7] Abrupt GaP/GaAs Interfaces in Self-Catalyzed Nanowires
    Priante, Giacomo
    Patriarche, Gilles
    Oehler, Fabrice
    Glas, Frank
    Harmand, Jean-Christophe
    NANO LETTERS, 2015, 15 (09) : 6036 - 6041
  • [8] Simulated growth of GaAs nanowires: Catalytic and self-catalyzed growth
    M. V. Knyazeva
    A. G. Nastovjak
    I. G. Neizvestny
    N. L. Shwartz
    Semiconductors, 2015, 49 : 60 - 68
  • [9] Monte Carlo Simulation of Alternate Pulsed Epitaxial Growth of GaAs Nanowires
    Nastovjak, Alla G.
    Shterental, David, V
    Shwartz, Nataliya L.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (11):
  • [10] Examination of Catalytic GaAs Nanowire Growth by Monte Carlo Simulation
    Knyazeva, Maria V.
    Shwartz, Nataliya L.
    2014 15TH INTERNATIONAL CONFERENCE OF YOUNG SPECIALISTS ON MICRO/NANOTECHNOLOGIES AND ELECTRON DEVICES (EDM), 2014, : 54 - 56