Error Analysis of the Plane Wave Discontinuous Galerkin Method for Maxwell's Equations in Anisotropic Media

被引:11
作者
Yuan, Long [1 ]
Hu, Qiya [2 ,3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Scient Engn Comp, LSEC, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
Time-harmonic Maxwell's equations; anisotropic media; plane-wave basis; error estimates; nonhomogeneous; WEAK VARIATIONAL FORMULATION; HELMHOLTZ-EQUATION;
D O I
10.4208/cicp.OA-2018-0104
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we investigate the plane wave discontinuous Galerkin method for three-dimensional anisotropic time-harmonic Maxwell's equations with diagonal matrix coefficients. By introducing suitable transformations, we define new plane wave basis functions and derive error estimates of the approximate solutions generated by the proposed discretization method for the considered homogeneous equations. In the error estimates, some dependence of the error bounds on the condition number of the coefficient matrix is explicitly given. Combined with local spectral element method, we further prove a convergence result for the nonhomogeneous case. Numerical results verify the validity of the theoretical results, and indicate that the resulting approximate solutions generated by the PWDG possess high accuracies.
引用
收藏
页码:1496 / 1522
页数:27
相关论文
共 35 条
[1]  
[Anonymous], 2003, Finite Element Methods for Maxwell's Equations
[2]   Optimal Superconvergence of Energy Conserving Local Discontinuous Galerkin Methods for Wave Equations [J].
Cao, Waixiang ;
Li, Dongfang ;
Zhang, Zhimin .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 21 (01) :211-236
[3]   Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation [J].
Cessenat, O ;
Després, B .
JOURNAL OF COMPUTATIONAL ACOUSTICS, 2003, 11 (02) :227-238
[4]   Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem [J].
Cessenat, O ;
Despres, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) :255-299
[5]  
Cessenat O., 1996, THESIS
[6]   Discontinuous Galerkin methods with plane waves for time-harmonic problems [J].
Gabard, Gwenael .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) :1961-1984
[7]   PLANE WAVE DISCONTINUOUS GALERKIN METHODS: ANALYSIS OF THE h-VERSION [J].
Gittelson, Claude J. ;
Hiptmair, Ralf ;
Perugia, Ilaria .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (02) :297-331
[8]   PLANE WAVE DISCONTINUOUS GALERKIN METHODS FOR THE 2D HELMHOLTZ EQUATION: ANALYSIS OF THE p-VERSION [J].
Hiptmair, R. ;
Moiola, A. ;
Perugia, I. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (01) :264-284
[9]  
Hiptmair R., 2016, SPRINGER LECT NOTES, V114
[10]  
Hiptmair R, 2013, MATH COMPUT, V82, P247