Monolithic Integration of Enhancement- and Depletion-Mode AlN/GaN/AlGaN DHFETs by Selective MBE Regrowth

被引:28
作者
Brown, D. F. [1 ]
Shinohara, K. [1 ]
Williams, A. [1 ]
Milosavljevic, I. [1 ]
Grabar, R. [1 ]
Hashimoto, P. [1 ]
Willadsen, P. J. [1 ]
Schmitz, A. [1 ]
Corrion, A. L. [1 ]
Kim, S. [1 ]
Regan, D. [1 ]
Butler, C. M. [1 ]
Burnham, S. D. [1 ]
Micovic, M. [1 ]
机构
[1] HRL Labs, Ltd Liabil Co, Malibu, CA 90265 USA
关键词
AlN/GaN; depletion mode (D-mode); enhancement mode (E-mode); heterojunction field-effect transistor (HFET); monolithic integration; HEMTS;
D O I
10.1109/TED.2011.2105268
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have achieved the monolithic integration of two III-nitride device structures through the use of etching and regrowth by molecular beam epitaxy (MBE). Using this regrowth technique, we integrated enhancement-mode (E-mode) and depletion-mode (D-mode) AlN/GaN/AlGaN double-heterojunction field-effect transistors (DHFETs) on a single SiC substrate, wherein the E-mode devices had a 2-nm-thick AlN barrier layer and the D-mode devices had a 3.5-nm-thick AlN barrier layer. The direct-current and radio-frequency (RF) performance of the resulting DHFETs was equivalent to devices fabricated using our baseline process with a normal MBE growth. D-mode devices with a gate length of 150 nm had a threshold voltage V-th of -0.10 V, a peak transconductance g(m) value of 640 mS/mm, and current-gain and power-gain cutoff frequencies f(T) and f(max) of 82 and 210 GHz, respectively. E-mode devices on the same wafer with the same dimensions had a V-th value of +0.24 V, a peak g(m) value of 525 mS/mm, and f(T) and f(max) values of 50 and 150 GHz, respectively. The application of this regrowth technique is not, in any way, limited to the integration of E-and D-mode devices, and this method greatly expands the design possibilities of RF and power switching circuits in the nitride material system.
引用
收藏
页码:1063 / 1067
页数:5
相关论文
共 16 条
[1]  
Cai Y, 2005, INT EL DEVICES MEET, P791
[2]   High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment [J].
Cai, Y ;
Zhou, YG ;
Chen, KJ ;
Lau, KM .
IEEE ELECTRON DEVICE LETTERS, 2005, 26 (07) :435-437
[3]   V-Gate GaN HEMTs With Engineered Buffer for Normally Off Operation [J].
Chu, Rongming ;
Chen, Zhen ;
DenBaars, Steven P. ;
Mishra, Umesh K. .
IEEE ELECTRON DEVICE LETTERS, 2008, 29 (11) :1184-1186
[4]   Enhancement-Mode AlN/GaN/AlGaN DHFET With 700-mS/mm gm and 112-GHz fT [J].
Corrion, A. L. ;
Shinohara, K. ;
Regan, D. ;
Milosavljevic, I. ;
Hashimoto, P. ;
Willadsen, P. J. ;
Schmitz, A. ;
Wheeler, D. C. ;
Butler, C. M. ;
Brown, D. ;
Burnham, S. D. ;
Micovic, M. .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (10) :1116-1118
[5]   MONOLITHIC INTEGRATION OF ALGAAS/GAAS MQW LASER DIODE AND GAAS-MESFET GROWN ON SI USING SELECTIVE REGROWTH [J].
EGAWA, T ;
JIMBO, T ;
UMENO, M .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1992, 4 (06) :612-614
[6]   Enhancement-mode AlN/GaN HFETs using Cat-CVD SiN [J].
Higashiwaki, Masataka ;
Mimura, Takashi ;
Matsui, Toshiaki .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (06) :1566-1570
[7]   Low On-Resistance High-Breakdown Normally Off AlN/GaN/AlGaN DHFET on Si Substrate [J].
Medjdoub, F. ;
Derluyn, J. ;
Cheng, K. ;
Leys, M. ;
Degroote, S. ;
Marcon, D. ;
Visalli, D. ;
Van Hove, M. ;
Germain, M. ;
Borghs, G. .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (02) :111-113
[8]   GaN Double Heterojunction Field Effect Transistor for microwave and millimeterwave power applications [J].
Micovic, M ;
Hashimoto, P ;
Hu, M ;
Milosavljevic, I ;
Duvall, J ;
Willadsen, PJ ;
Wong, WS ;
Conway, AM ;
Kurdoghlian, A ;
Deelman, PW ;
Moon, JS ;
Schmitz, A ;
Delaney, MJ .
IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2004, TECHNICAL DIGEST, 2004, :807-810
[9]   GaN enhancement/depletion-mode FET logic for mixed signal applications [J].
Micovic, M ;
Tsen, T ;
Hu, M ;
Hashimoto, P ;
Willadsen, PJ ;
Milosavljevic, I ;
Schmitz, A ;
Antcliffe, M ;
Zhender, D ;
Moon, JS ;
Wong, WS ;
Chow, D .
ELECTRONICS LETTERS, 2005, 41 (19) :1081-1083
[10]  
Micovic M, 2010, IEEE MTT S INT MICR, P237, DOI 10.1109/MWSYM.2010.5516911