Nonisothermal diffusion-reaction with nonlinear Kramers kinetics

被引:2
|
作者
Ortiz de Zarate, Jose M. [1 ]
Bedeaux, Dick [2 ,3 ]
Pagonabarraga, Ignacio [4 ]
Sengers, Jan V. [5 ]
Kjelstrup, Signe [2 ,3 ]
机构
[1] Univ Complutense, Dept Fis Aplicada 1, E-28040 Madrid, Spain
[2] Norwegian Univ Sci & Technol, Dept Chem, N-7491 Trondheim, Norway
[3] Delft Univ Technol, Dept Proc & Energy, NL-2628 CA Delft, Netherlands
[4] Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain
[5] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
来源
COMPTES RENDUS MECANIQUE | 2011年 / 339卷 / 05期
关键词
Mesoscopic nonequilibrium thermodynamics; Nonisothermal chemical reactions; Soret effect; Temperature profiles; Flux profiles; Thermal diffusion; CHEMICAL-REACTIONS; NONEQUILIBRIUM THERMODYNAMICS; HYDRODYNAMICS; TRANSPORT; DYNAMICS; SYSTEMS;
D O I
10.1016/j.crme.2011.03.003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Recently, we have started to develop mesoscopic nonequilibrium thermodynamics for a reaction far from equilibrium in the presence of a temperature gradient, so that the interplay between the chemical reaction, diffusion and thermal diffusion can be described within the same theoretical framework. In this article we show that the spatial symmetry properties of the deterministic solution, which were so characteristic for conditions close to equilibrium, are no longer valid far from equilibrium. This is expected to have some conceptual consequences for the spatial spectrum of the fluctuations of temperature and concentrations around their local equilibrium values. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:287 / 291
页数:5
相关论文
共 50 条
  • [41] A NONLINEAR DIFFUSION-REACTION MODEL OF ELECTRICAL-CONDUCTION IN SEMICONDUCTOR GAS SENSORS
    GARDNER, JW
    SENSORS AND ACTUATORS B-CHEMICAL, 1990, 1 (1-6) : 166 - 170
  • [42] Fronts in anomalous diffusion-reaction systems
    Volpert, V. A.
    Nec, Y.
    Nepomnyashchy, A. A.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1982):
  • [43] A calcium diffusion-reaction model for facilitation
    Schlumpberger, T
    COMPUTATIONAL NEUROSCIENCE: TRENDS IN RESEARCH, 1998, : 257 - 260
  • [44] Fractional diffusion-reaction stochastic simulations
    Bayati, Basil S.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (10):
  • [45] A DIFFUSION-REACTION MODEL OF NERVE REGENERATION
    PODHAJSKY, RJ
    MYERS, RR
    JOURNAL OF NEUROSCIENCE METHODS, 1995, 60 (1-2) : 79 - 88
  • [46] Class of integrable diffusion-reaction processes
    Alimohammadi, M
    Ahmadi, N
    PHYSICAL REVIEW E, 2000, 62 (02) : 1674 - 1682
  • [47] Particle tracking and the diffusion-reaction equation
    Paster, A.
    Bolster, D.
    Benson, D. A.
    WATER RESOURCES RESEARCH, 2013, 49 (01) : 1 - 6
  • [48] Dimensionality reduction in diffusion-reaction systems
    Park, Kihyun
    Kim, Taejun
    Kim, Hyojoon
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2024, 45 (02) : 178 - 182
  • [49] Predictive control of diffusion-reaction processes
    Dubljevic, S
    Mhaskar, P
    El-Farra, NH
    Christofides, PD
    ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, : 4551 - 4556
  • [50] KINETIC TRANSITIONS IN DIFFUSION-REACTION SPACE
    KOZAK, JJ
    DAVIDSON, R
    JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (07): : 6101 - 6110