Nonisothermal diffusion-reaction with nonlinear Kramers kinetics

被引:2
|
作者
Ortiz de Zarate, Jose M. [1 ]
Bedeaux, Dick [2 ,3 ]
Pagonabarraga, Ignacio [4 ]
Sengers, Jan V. [5 ]
Kjelstrup, Signe [2 ,3 ]
机构
[1] Univ Complutense, Dept Fis Aplicada 1, E-28040 Madrid, Spain
[2] Norwegian Univ Sci & Technol, Dept Chem, N-7491 Trondheim, Norway
[3] Delft Univ Technol, Dept Proc & Energy, NL-2628 CA Delft, Netherlands
[4] Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain
[5] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
来源
COMPTES RENDUS MECANIQUE | 2011年 / 339卷 / 05期
关键词
Mesoscopic nonequilibrium thermodynamics; Nonisothermal chemical reactions; Soret effect; Temperature profiles; Flux profiles; Thermal diffusion; CHEMICAL-REACTIONS; NONEQUILIBRIUM THERMODYNAMICS; HYDRODYNAMICS; TRANSPORT; DYNAMICS; SYSTEMS;
D O I
10.1016/j.crme.2011.03.003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Recently, we have started to develop mesoscopic nonequilibrium thermodynamics for a reaction far from equilibrium in the presence of a temperature gradient, so that the interplay between the chemical reaction, diffusion and thermal diffusion can be described within the same theoretical framework. In this article we show that the spatial symmetry properties of the deterministic solution, which were so characteristic for conditions close to equilibrium, are no longer valid far from equilibrium. This is expected to have some conceptual consequences for the spatial spectrum of the fluctuations of temperature and concentrations around their local equilibrium values. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:287 / 291
页数:5
相关论文
共 50 条
  • [21] Patterns due to quintic kinetics in a diffusion-reaction system with global interaction
    Sheintuch, M
    Nekhamkina, O
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (24): : 10612 - 10619
  • [22] Effect of spatial concentration fluctuations on effective kinetics in diffusion-reaction systems
    Tartakovsky, A. M.
    de Anna, P.
    Le Borgne, T.
    Balter, A.
    Bolster, D.
    WATER RESOURCES RESEARCH, 2012, 48
  • [23] On the exact solutions of nonlinear diffusion-reaction equations with quadratic and cubic nonlinearities
    R S Kaushal
    Ranjit Kumar
    Awadhesh Prasad
    Pramana, 2006, 67 : 249 - 256
  • [24] On the exact solutions of nonlinear diffusion-reaction equations with quadratic and cubic nonlinearities
    Kaushal, R. S.
    Kumar, Ranjit
    Prasad, Awadhesh
    PRAMANA-JOURNAL OF PHYSICS, 2006, 67 (02): : 249 - 256
  • [25] APPROXIMATE SOLUTIONS FOR NONLINEAR DIFFUSION-REACTION EQUATIONS FROM THE MAXIMUM PRINCIPLE
    REGALBUTO, M
    STRIEDER, W
    VARMA, A
    CHEMICAL ENGINEERING SCIENCE, 1988, 43 (03) : 513 - 518
  • [26] A dynamical study of certain nonlinear diffusion-reaction equations with a nonlinear convective flux term
    Malik, Anand
    Kumar, Hitender
    Chahal, Rishi Pal
    Chand, Fakir
    PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (01):
  • [27] Exact solutions of variable coefficient nonlinear diffusion-reaction equations with a nonlinear convective term
    Mishra, Ajay
    Kumar, Ranjit
    PHYSICS LETTERS A, 2010, 374 (29) : 2921 - 2924
  • [28] Diffusion-reaction: Growth and nucleation
    dHeurle, FM
    Gas, P
    Philibert, J
    DEFECT AND DIFFUSION FORUM, 1997, 143 : 529 - 539
  • [29] ON A SYSTEM OF DIFFUSION-REACTION EQUATIONS
    GAJEWSKI, H
    ZACHARIAS, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1980, 60 (09): : 357 - 370
  • [30] MULTIPLICATIVE CONTROL PROBLEMS FOR NONLINEAR CONVECTION- DIFFUSION-REACTION EQUATION
    Brizitskii, R., V
    Saritskaya, Zh. Yu
    Byrganov, A., I
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 : 352 - 360