Connected graphs with maximal Q-index: The one-dominating-vertex case

被引:8
作者
Chang, Ting-Chung [2 ]
Tam, Bit-Shun [1 ]
机构
[1] Tamkang Univ, Dept Math, New Taipei City 25137, Taiwan
[2] Chihlee Inst Technol, New Taipei City 22050, Taiwan
关键词
Graph spectra; Signless Laplacian; Maximal Q-index problem; Line graph; Threshold graph; SPECTRAL-RADIUS; EIGENVALUE; MATRICES; REARRANGEMENTS; NUMBER; BOUNDS;
D O I
10.1016/j.laa.2011.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G) = D(G) + A(C). where A(G). D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. For every pair of positive integers n, k, it is proved that if 3 <= k <= n - 3, then H-n,H-k, the graph obtained from the star K-1,K- n-1 by joining a vertex of degree 1 to k+1 other vertices of degree 1, is the unique connected graph that maximizes the largest signless Laplacian eigenvalue over all connected graphs with n vertices and n + k edges. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2451 / 2461
页数:11
相关论文
共 29 条
  • [1] A PROBLEM IN REARRANGEMENTS OF (0,1) MATRICES
    AHARONI, R
    [J]. DISCRETE MATHEMATICS, 1980, 30 (03) : 191 - 201
  • [2] GRAPHS WITH MAXIMAL NUMBER OF ADJACENT PAIRS OF EDGES
    AHLSWEDE, R
    KATONA, GOH
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 32 (1-2): : 97 - 120
  • [3] [Anonymous], 1997, Eigenspaces of graphs
  • [4] Variable neighborhood search for extremal graphs. 16. Some conjectures related to the largest eigenvalue of a graph
    Aouchiche, M.
    Bell, F. K.
    Cvetkovic, D.
    Hansen, P.
    Rowlinson, P.
    Simic, S. K.
    Stevanovic, D.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 191 (03) : 661 - 676
  • [5] ON THE MAXIMAL INDEX OF CONNECTED GRAPHS
    BELL, FK
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 144 : 135 - 151
  • [6] Bhattacharya A, 2008, ELECTRON J COMB, V15
  • [7] THE NEIGHBORHOOD INCLUSION STRUCTURE OF A GRAPH
    BOESCH, F
    SUFFEL, C
    TINDELL, R
    HARARY, F
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1993, 17 (11) : 25 - 28
  • [8] ON THE SPECTRAL-RADIUS OF (0,1)-MATRICES
    BRUALDI, RA
    HOFFMAN, AJ
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 65 (FEB) : 133 - 146
  • [9] Brualdi RA., 1986, Publ. Inst. Math. (Beograd) (N.S.), V39, P45
  • [10] CHANG TC, 2010, THESIS TAMKANG U