Bayesian calibration of continuum damage model parameters for an oxide-oxide ceramic matrix composite using inhomogeneous experimental data

被引:4
作者
Generale, Adam P. [1 ]
Hall, Richard B. [4 ]
Brockman, Robert A. [5 ]
Joseph, V. Roshan [3 ]
Jefferson, George [4 ]
Zawada, Larry [4 ,6 ]
Pierce, Jennifer [4 ,5 ]
Kalidindi, Surya R. [1 ,2 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Computat Sci Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[4] Air Force Res Lab, Wright Patterson AFB, OH 45433 USA
[5] Univ Dayton, Res Inst, Dayton, OH 45469 USA
[6] ARCTOS Technol Solut, Beavercreek, OH 45432 USA
基金
美国国家科学基金会;
关键词
Ceramic Matrix Composites; Bayesian Inference; Markov Chain Monte Carlo; Probabilistic Calibration; Uncertainty Quantification; MECHANICAL-BEHAVIOR; CONSTITUTIVE MODEL; MODULUS;
D O I
10.1016/j.mechmat.2022.104487
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The calibration of continuum damage mechanics (CDM) models is often performed by least-squares regression through the design of specifically crafted experiments to identify a deterministic solution of model parameters minimizing the squared error between the model prediction and the corresponding experimental result. Spe-cifically, this work demonstrates a successful application of Bayesian inference for the simultaneous estimation of eleven material parameters of a viscous multimode CDM model conditioned upon a small inhomogeneous multiaxial experimental dataset. The stochastic treatment of CDM model parameters provides uncertainty esti-mates, enables the propagation of uncertainty into further analyses, and provides for principled decision making regarding informative subsequent experimental tests of value. The methodology presented in this work is also broadly applicable to various mechanical models with high-dimensional parameter sets.
引用
收藏
页数:11
相关论文
empty
未找到相关数据