Duality of Variable Exponent Triebel-Lizorkin and Besov Spaces

被引:9
作者
Noi, Takahiro [1 ]
机构
[1] Chuo Univ, Grad Sch Sci & Engn, Dept Math, Bunkyo Ku, Tokyo 1920393, Japan
来源
JOURNAL OF FUNCTION SPACES AND APPLICATIONS | 2012年
关键词
BESSEL POTENTIAL SPACES; MAXIMAL OPERATOR; SMOOTHNESS;
D O I
10.1155/2012/361807
中图分类号
学科分类号
摘要
We will prove the duality and reflexivity of variable exponent Triebel-Lizorkin and Besov spaces. It was shown by many authors that variable exponent Triebel-Lizorkin spaces coincide with variable exponent Bessel potential spaces, Sobolev spaces, and Lebesgue spaces when appropriate indices are chosen. In consequence of the results, these variable exponent function spaces are shown to be reflexive.
引用
收藏
页数:19
相关论文
共 50 条
[41]   Variable Triebel-Lizorkin-Lorentz Spaces Associated to Operators [J].
Saibi, Khedoudj .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (08)
[42]   Variable Exponent Besov-Morrey Spaces [J].
Almeida, Alexandre ;
Caetano, Antonio .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (01)
[43]   BOUNDEDNESS AND CONTINUITY OF MAXIMAL OPERATORS ASSOCIATED TO POLYNOMIAL COMPOUND CURVES ON TRIEBEL-LIZORKIN SPACES [J].
Liu, Feng .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (01) :25-44
[44]   Morrey and Campanato Meet Besov, Lizorkin and Triebel Introduction [J].
Yuan, Wen ;
Sickel, Winfried ;
Yang, Dachun .
MORREY AND CAMPANATO MEET BESOV, LIZORKIN AND TRIEBEL, 2010, 2005 :1-+
[45]   A remark on the paper "Vector-valued operators with singular kernel and Triebel-Lizorkin block spaces with variable exponents" by Kwok Pun Ho [J].
Hatano, Naoya ;
Nogayama, Toru ;
Sawano, Yoshihiro .
KYOTO JOURNAL OF MATHEMATICS, 2022, 62 (02) :357-375
[46]   Non-smooth atomic decomposition of variable 2-microlocal Besov-type and Triebel-Lizorkin-type spaces [J].
Goncalves, Helena F. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (03)
[47]   Characterization of Triebel-Lizorkin type spaces with variable exponents via maximal functions, local means and non-smooth atomic decompositions [J].
Goncalves, Helena F. ;
Moura, Susana D. .
MATHEMATISCHE NACHRICHTEN, 2018, 291 (13) :2024-2044
[48]   CHARACTERIZATIONS OF VARIABLE TRIEBEL-LIZORKIN-TYPE SPACES VIA BALL AVERAGES [J].
Zhuo, Ciqiang ;
Chang, Der-Chen ;
Yang, Dachun ;
Yuan, Wen .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (01) :19-40
[49]   A framework of Besov-Triebel-Lizorkin type spaces via ball quasi-Banach function sequence spaces I: real-variable characterizations [J].
Sun, Jingsong ;
Yang, Dachun ;
Yuan, Wen .
MATHEMATISCHE ANNALEN, 2024, 390 (03) :4283-4360
[50]   Composition operators on Lizorkin-Triebel spaces [J].
Bourdaud, Gerard ;
Moussai, Madani ;
Sickel, Winfried .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (05) :1098-1128