Generation of Localized Modes in an Electrical Lattice Using Subharmonic Driving

被引:41
作者
English, L. Q. [1 ]
Palmero, F. [2 ]
Candiani, P. [1 ]
Cuevas, J. [2 ]
Carretero-Gonzalez, R. [3 ,4 ]
Kevrekidis, P. G. [5 ]
Sievers, A. J. [6 ]
机构
[1] Dickinson Coll, Dept Phys & Astron, Carlisle, PA 17013 USA
[2] Univ Seville, Nonlinear Phys Grp, Escuela Tecn Super Ingn Informat, Dept Fis Aplicada 1, E-41012 Seville, Spain
[3] San Diego State Univ, Nonlinear Dynam Syst Grp, Dept Math & Stat, San Diego, CA 92182 USA
[4] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA
[5] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[6] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
DISCRETE BREATHERS; NONLINEAR LATTICES; EXISTENCE; STABILITY;
D O I
10.1103/PhysRevLett.108.084101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show experimentally and numerically that an intrinsic localized mode (ILM) can be stably produced (and experimentally observed) via subharmonic, spatially homogeneous driving in the context of a nonlinear electrical lattice. The precise nonlinear spatial response of the system has been seen to depend on the relative location in frequency between the driver frequency, omega(d), and the bottom of the linear dispersion curve, omega(0). If omega(d)/2 lies just below omega(0), then a single ILM can be generated in a 32-node lattice, whereas, when omega(d)/2 lies within the dispersion band, a spatially extended waveform resembling a train of ILMs results. To our knowledge, and despite its apparently broad relevance, such an experimental observation of subharmonically driven ILMs has not been previously reported.
引用
收藏
页数:5
相关论文
共 26 条
[1]   Subharmonic resonance and transition to chaos of nonlinear oscillators with a combined softening and hardening nonlinearities [J].
Al-Qaisia, A. A. ;
Hamdan, M. N. .
JOURNAL OF SOUND AND VIBRATION, 2007, 305 (4-5) :772-782
[2]  
[Anonymous], 2003, Optical Solitons
[3]   Breathers in nonlinear lattices: Existence, linear stability and quantization [J].
Aubry, S .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :201-250
[4]   Existence and stability chart for the ac-driven, damped nonlinear Schrodinger solitons [J].
Barashenkov, IV ;
Smirnov, YS .
PHYSICAL REVIEW E, 1996, 54 (05) :5707-5725
[5]   Observation of breathers in Josephson ladders [J].
Binder, P ;
Abraimov, D ;
Ustinov, AV ;
Flach, S ;
Zolotaryuk, Y .
PHYSICAL REVIEW LETTERS, 2000, 84 (04) :745-748
[6]   Traveling and stationary intrinsic localized modes and their spatial control in electrical lattices [J].
English, L. Q. ;
Palmero, F. ;
Sievers, A. J. ;
Kevrekidis, P. G. ;
Barnak, D. H. .
PHYSICAL REVIEW E, 2010, 81 (04)
[7]   Patterns of traveling intrinsic localized modes in a driven electrical lattice [J].
English, L. Q. ;
Thakur, R. Basu ;
Stearrett, Ryan .
PHYSICAL REVIEW E, 2008, 77 (06)
[8]   Discrete breathers - Advances in theory and applications [J].
Flach, Sergej ;
Gorbach, Andrey V. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 467 (1-3) :1-116
[9]   Parametric solitons in two-dimensional lattices of purely nonlinear origin [J].
Gallo, Katia ;
Pasquazi, Alessia ;
Stivala, Salvatore ;
Assanto, Gaetano .
PHYSICAL REVIEW LETTERS, 2008, 100 (05)
[10]   Intrinsic localized modes in parametrically driven arrays of nonlinear resonators [J].
Kenig, Eyal ;
Malomed, Boris A. ;
Cross, M. C. ;
Lifshitz, Ron .
PHYSICAL REVIEW E, 2009, 80 (04)