A review of validation strategies for computational drug repositioning

被引:33
作者
Brown, Adam S. [2 ]
Patel, Chirag J. [1 ]
机构
[1] Harvard Med Sch, Dept Biomed Informat, 10 Shattuck St, Boston, MA 02115 USA
[2] Harvard Med Sch, Biol & Biomed Sci Program, Boston, MA USA
基金
美国国家卫生研究院;
关键词
drug repositioning; analytic validation; research reproducibility; RESOURCE;
D O I
10.1093/bib/bbw110
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Repositioning of previously approved drugs is a promising methodology because it reduces the cost and duration of the drug development pipeline and reduces the likelihood of unforeseen adverse events. Computational repositioning is especially appealing because of the ability to rapidly screen candidates in silico and to reduce the number of possible repositioning candidates. What is unclear, however, is how useful such methods are in producing clinically efficacious repositioning hypotheses. Furthermore, there is no agreement in the field over the proper way to perform validation of in silico predictions, and in fact no systematic review of repositioning validation methodologies. To address this unmet need, we review the computational repositioning literature and capture studies in which authors claimed to have validated their work. Our analysis reveals widespread variation in the types of strategies, predictions made and databases used as 'gold standards'. We highlight a key weakness of the most commonly used strategy and propose a path forward for the consistent analytic validation of repositioning techniques.
引用
收藏
页码:174 / 177
页数:4
相关论文
共 22 条
[1]   ksRepo: a generalized platform for computational drug repositioning [J].
Brown, Adam S. ;
Kong, Sek Won ;
Kohane, Isaac S. ;
Patel, Chirag J. .
BMC BIOINFORMATICS, 2016, 17
[2]   Quantitative biomedical annotation using medical subject heading over-representation profiles (MeSHOPs) [J].
Cheung, Warren A. ;
Ouellette, B. F. Francis ;
Wasserman, Wyeth W. .
BMC BIOINFORMATICS, 2012, 13
[3]   The Comparative Toxicogenomics Database's 10th year anniversary: update 2015 [J].
Davis, Allan Peter ;
Grondin, Cynthia J. ;
Lennon-Hopkins, Kelley ;
Saraceni-Richards, Cynthia ;
Sciaky, Daniela ;
King, Benjamin L. ;
Wiegers, Thomas C. ;
Mattingly, Carolyn J. .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D914-D920
[4]   An introduction to ROC analysis [J].
Fawcett, Tom .
PATTERN RECOGNITION LETTERS, 2006, 27 (08) :861-874
[5]   PREDICT: a method for inferring novel drug indications with application to personalized medicine [J].
Gottlieb, Assaf ;
Stein, Gideon Y. ;
Ruppin, Eytan ;
Sharan, Roded .
MOLECULAR SYSTEMS BIOLOGY, 2011, 7
[6]   Small-sample precision of ROC-related estimates [J].
Hanczar, Blaise ;
Hua, Jianping ;
Sima, Chao ;
Weinstein, John ;
Bittner, Michael ;
Dougherty, Edward R. .
BIOINFORMATICS, 2010, 26 (06) :822-830
[7]   DMAP: a connectivity map database to enable identification of novel drug repositioning candidates [J].
Huang, Hui ;
Thanh Nguyen ;
Ibrahim, Sara ;
Shantharam, Sandeep ;
Yue, Zongliang ;
Chen, Jake Y. .
BMC BIOINFORMATICS, 2015, 16
[8]   Inferring disease association using clinical factors in a combinatorial manner and their use in drug repositioning [J].
Jung, Jinmyung ;
Lee, Doheon .
BIOINFORMATICS, 2013, 29 (16) :2017-2023
[9]   Prediction of drug gene associations via ontological profile similarity with application to drug repositioning [J].
Kissa, Maria ;
Tsatsaronis, George ;
Schroeder, Michael .
METHODS, 2015, 74 :71-82
[10]   The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease [J].
Lamb, Justin ;
Crawford, Emily D. ;
Peck, David ;
Modell, Joshua W. ;
Blat, Irene C. ;
Wrobel, Matthew J. ;
Lerner, Jim ;
Brunet, Jean-Philippe ;
Subramanian, Aravind ;
Ross, Kenneth N. ;
Reich, Michael ;
Hieronymus, Haley ;
Wei, Guo ;
Armstrong, Scott A. ;
Haggarty, Stephen J. ;
Clemons, Paul A. ;
Wei, Ru ;
Carr, Steven A. ;
Lander, Eric S. ;
Golub, Todd R. .
SCIENCE, 2006, 313 (5795) :1929-1935