The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients

被引:57
作者
Krylov, NV [1 ]
机构
[1] Univ Minnesota, 127 Vincent Hall, Minneapolis, MN 55455 USA
关键词
finite-difference approximations; Bellman equations; fully nonlinear equations;
D O I
10.1007/s00245-005-0832-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider parabolic Bellman equations with Lipschitz coefficients. Error bounds of order h(1/2) for certain types of finite-difference schemes are obtained.
引用
收藏
页码:365 / 399
页数:35
相关论文
共 21 条
[1]  
[Anonymous], 1999, ELECTRON J PROBAB
[2]  
BARDI M, 1987, OPTIMAL CONTROL VISC
[3]  
Barles G., 1991, Asymptotic Analysis, V4, P271
[4]   On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations [J].
Barles, G ;
Jakobsen, ER .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2002, 36 (01) :33-54
[5]  
BARLES G, IN PRESS SIAM J NUME
[6]   AN APPROXIMATION SCHEME FOR THE OPTIMAL-CONTROL OF DIFFUSION-PROCESSES [J].
CAMILLI, F ;
FALCONE, M .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (01) :97-122
[7]   Convergent difference schemes for nonlinear parabolic equations and mean curvature motion [J].
Crandall, MG ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1996, 75 (01) :17-41
[8]  
Deckelnick K., 2000, Interfaces Free Bound, V2, P117, DOI DOI 10.4171/IFB/15
[9]  
DONG HJ, UNPUB RATE CONVERGEN
[10]  
DONG HJ, UNPUB MATH COMP