Experimental and simulated temperature variations in a LiFePO4-20 Ah battery during discharge process

被引:61
作者
Panchal, S. [1 ]
Dincer, I. [1 ]
Agelin-Chaab, M. [1 ]
Fraser, R. [2 ]
Fowler, M. [3 ]
机构
[1] Univ Ontario Inst Technol, Fac Engn & Appl Sci, Dept Automot Mech & Mfg Engn, 2000 Simcoe St North, Oshawa, ON L1H 7K4, Canada
[2] Univ Waterloo, Mech & Mechatron Engn Dept, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Chem Engn Dept, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
关键词
Energy; Electric vehicle; Hybrid electric vehicle; Battery; Heat transfer; Temperature; LITHIUM-ION BATTERY; THERMAL MANAGEMENT-SYSTEM; CATHODE MATERIALS; HYBRID; POWER; LI; MODEL; STATE; DISTRIBUTIONS; CHARGE;
D O I
10.1016/j.apenergy.2016.08.008
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The present study investigates the impact of various discharge rates on the thermal (temperature and heat generation profiles) and electrical performance of the Li-ion battery for electric vehicles and hybrid electric vehicles. For this, a prismatic Li-ion phosphate (LiFePO4) battery with 20 Ah capacity is tested under constant current discharge rates of C/10, C/5, C/2, 1C, 2C, 3C, and 4C and surface temperatures and voltage distributions during both charging and discharging are measured. In addition, IR images were also captured during experiments with a Flir Therma CAM S60 IR camera at various discharge rates and are reported in this study. Furthermore, a thermal model is created and validated for a particular battery using a MATLAB Simulink in terms of temperature, voltage, heat generation, and internal resistance. The results of this study demonstrate that the increased C-rates from C/10 to 4C result in increased temperatures on the principal surface of the battery. Also, at the lower discharge rates (below 1C), the surface temperature remains close to the ambient temperature, but at higher discharge rates (above 1C); the surface temperature quickly increases for all C-rates. The most noteworthy surface temperature distribution is observed to be 58.1 degrees C towards the end of 4C discharge. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:504 / 515
页数:12
相关论文
共 54 条
[1]  
Abousleiman R, 2013, CHARGE CAPACITY VERS
[2]   Solid-State Thermal Management for Lithium-Ion EV Batteries [J].
Alaoui, Chakib .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2013, 62 (01) :98-107
[3]   Design of electrolyte solutions for Li and Li-ion batteries: a review [J].
Aurbach, D ;
Talyosef, Y ;
Markovsky, B ;
Markevich, E ;
Zinigrad, E ;
Asraf, L ;
Gnanaraj, JS ;
Kim, HJ .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :247-254
[4]   Cathodes for lithium ion batteries: The benefits of using nanostructured materials [J].
Bazito, Fernanda F. C. ;
Torresi, Roberto M. .
JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2006, 17 (04) :627-642
[5]   LiAlO2-coated LiCoO2 as cathode material for lithium ion batteries [J].
Cao, H ;
Xia, BJ ;
Zhang, Y ;
Xu, NX .
SOLID STATE IONICS, 2005, 176 (9-10) :911-914
[6]  
Ceraolo M, 2012, EL VEH C IEVC
[7]   3-DIMENSIONAL THERMAL MODELING OF LITHIUM-POLYMER BATTERIES UNDER GALVANOSTATIC DISCHARGE AND DYNAMIC POWER PROFILE [J].
CHEN, YF ;
EVANS, JW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (11) :2947-2955
[8]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[9]  
Dahn J., 2011, LINDENS HDB BATTERIE
[10]  
Dinger A., 2010, Batteries for Electric Cars: Challenges, Opportunities, and the Outlook to 2020