Even-order harmonic generation from nonlinear Thomson backscatter in a tightly focused Gaussian laser pulse

被引:6
作者
Hong, Xue-Ren [1 ]
Li, Ya-Nan [1 ]
Wei, Dou [1 ]
Tang, Rong-An [1 ]
Sun, Jian-An [1 ]
Duan, Wen-Shan [1 ]
机构
[1] Northwest Normal Univ, Coll Phys & Elect Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
X-RAY SOURCE; ELECTRON DYNAMICS; ION-ACCELERATION; EMISSION-SPECTRA; SCATTERING; DRIVEN; INTENSE; BEAMS;
D O I
10.1063/5.0077486
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The electron dynamics and the Thomson backscattering spectra for an electron accelerating in a tightly focused Gaussian laser pulse are first investigated in detail. It is found that for a tightly focused Gaussian laser pulse, the ponderomotive force introduced due to the non-uniform intensity distribution of the laser pulse has the tendency to push out the electron from the laser pulse, which leads to the trajectory symmetry-breaking of the electron and then the generation of the even-order harmonics at the same time. Further, for the tightly focused Gaussian laser pulse, changes in several laser parameters, such as the increase of the laser peak amplitude, lengthening of the pulse width, and decrease of the beam waist, lead earlier to the relative ejected position of the electron to the laser pulse, which causes the more obvious trajectory symmetry-breaking of the electron, and then the more intensive peak intensity of the even-order harmonics. It is different from the well-known results of the plane waves and the Gaussian laser pulse with uniform transverse intensity distribution and provides a possible way for the generation of the even-order harmonics in nonlinear Thomson backscattering.& nbsp;& nbsp;Published under an exclusive license by AIP Publishing.
引用
收藏
页数:9
相关论文
共 54 条
[1]   Nonlinear relativistic single-electron Thomson scattering power spectrum for incoming laser of arbitrary intensity [J].
Alvarez-Estrada, R. F. ;
Pastor, I. ;
Guasp, J. ;
Castejon, F. .
PHYSICS OF PLASMAS, 2012, 19 (06)
[2]   X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition [J].
Baczewski, A. D. ;
Shulenburger, L. ;
Desjarlais, M. P. ;
Hansen, S. B. ;
Magyar, R. J. .
PHYSICAL REVIEW LETTERS, 2016, 116 (11)
[3]   Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density [J].
Bake, Muhammad Ali ;
Shan-Zhang ;
Xie, Bai-Song ;
Hong, Xue-Ren ;
Wang, Hong-Yu .
PHYSICS OF PLASMAS, 2012, 19 (08)
[4]   RELATIVISTIC PONDEROMOTIVE FORCE, UPHILL ACCELERATION, AND TRANSITION TO CHAOS [J].
BAUER, D ;
MULSER, P ;
STEEB, WH .
PHYSICAL REVIEW LETTERS, 1995, 75 (25) :4622-4625
[5]   Modeling classical and quantum radiation from laser-plasma accelerators [J].
Chen, M. ;
Esarey, E. ;
Geddes, C. G. R. ;
Schroeder, C. B. ;
Plateau, G. R. ;
Bulanov, S. S. ;
Rykovanov, S. ;
Leemans, W. P. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2013, 16 (03)
[6]   Scalable control of terahertz radiation from ultrashort laser-gas interaction [J].
Chen, Min ;
Yuan, Xiao-Hui ;
Sheng, Zheng-Ming .
APPLIED PHYSICS LETTERS, 2012, 101 (16)
[7]   Asymmetric Molecular Imaging through Decoding Odd-Even High-Order Harmonics [J].
Chen, Y. J. ;
Fu, L. B. ;
Liu, J. .
PHYSICAL REVIEW LETTERS, 2013, 111 (07)
[8]   Femtosecond x rays from laser-plasma accelerators [J].
Corde, S. ;
Phuoc, K. Ta ;
Lambert, G. ;
Fitour, R. ;
Malka, V. ;
Rousse, A. ;
Beck, A. ;
Lefebvre, E. .
REVIEWS OF MODERN PHYSICS, 2013, 85 (01) :1-48
[9]   Characterization of a high-gain harmonic-generation free-electron laser at saturation [J].
Doyuran, A ;
Babzien, M ;
Shaftan, T ;
Yu, LH ;
DiMauro, LF ;
Ben-Zvi, I ;
Biedron, SG ;
Graves, W ;
Johnson, E ;
Krinsky, S ;
Malone, R ;
Pogorelsky, I ;
Skaritka, J ;
Rakowsky, G ;
Wang, XJ ;
Woodle, M ;
Yakimenko, V ;
Jagger, J ;
Sajaev, V ;
Vasserman, I .
PHYSICAL REVIEW LETTERS, 2001, 86 (26) :5902-5905
[10]   Laser-driven plasma sources of intense, ultrafast, and coherent radiation [J].
Edwards, Matthew R. ;
Fisch, Nathaniel J. ;
Mikhailova, Julia M. .
PHYSICS OF PLASMAS, 2021, 28 (01)