Dynamic programming principle for stochastic control problems driven by general Levy noise

被引:3
作者
Goldys, Ben [1 ]
Wu, Wei [2 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] UNSW Australia, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
Dynamic programming; Levy noise; stochastic control;
D O I
10.1080/07362994.2016.1207189
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the proof of the dynamic programming principle (DPP) for standard stochastic optimal control problems driven by general Levy noise. Under appropriate assumptions, it is shown that the DPP still holds when the state process fails to have any moments at all.
引用
收藏
页码:1083 / 1093
页数:11
相关论文
共 10 条
[1]  
[Anonymous], 2013, PREPRINT
[2]  
[Anonymous], 2009, Levy processes and stochastic calculus
[3]   Dynamic programming for a Markov-switching jump-diffusion [J].
Azevedo, N. ;
Pinheiro, D. ;
Weber, G. -W. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 267 :1-19
[4]   WEAK DYNAMIC PROGRAMMING PRINCIPLE FOR VISCOSITY SOLUTIONS [J].
Bouchard, Bruno ;
Touzi, Nizar .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (03) :948-962
[5]   Optimal control problem associated with jump processes [J].
Ishikawa, Y .
APPLIED MATHEMATICS AND OPTIMIZATION, 2004, 50 (01) :21-65
[6]   Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps [J].
Ishikawa, Yasushi ;
Kunita, Hiroshi .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (12) :1743-1769
[7]  
Krylov N. V., 1980, CONTROLLED DIFFUSION
[8]  
Kunita H, 2004, TRENDS MATH, P305
[9]  
Yong J., 1999, Stochastic Modelling and Applied Probability, DOI 10.1007/978-1-4612-1466-3_4
[10]  
Zlinescu A., 2011, AN AI CUZA U, V57, P163