A fractional-order form of a system with stable equilibria and its synchronization

被引:15
作者
Wang, Xiong [1 ]
Ouannas, Adel [2 ]
Viet-Thanh Pham [3 ]
Abdolmohammadi, Hamid Reza [4 ]
机构
[1] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Guangdong, Peoples R China
[2] Univ Larbi Tebessi, Dept Math & Comp Sci, Tebessa 12002, Algeria
[3] Ton Duc Thang Univ, Modeling Evolutionary Algorithms Simulat & Artifi, Fac Elect & Elect Engn, Ho Chi Minh City, Vietnam
[4] Golpayegan Univ Technol, Dept Elect Engn, Golpayegan, Iran
基金
中国国家自然科学基金;
关键词
chaos; equilibrium; hidden attractor; fractional order; synchronization; CHAOTIC AUTONOMOUS SYSTEM; SPROTT C SYSTEM; CIRCUIT-DESIGN; PROJECTIVE SYNCHRONIZATION; LYAPUNOV FUNCTIONS; DYNAMICAL ANALYSIS; HIDDEN ATTRACTORS; MULTISTABILITY; IMPLEMENTATION; STABILITY;
D O I
10.1186/s13662-018-1479-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There has been an increasing interest in studying fractional-order chaotic systems and their synchronization. In this paper, the fractional-order form of a system with stable equilibrium is introduced. It is interesting that such a three-dimensional fractional system can exhibit chaotic attractors. Full-state hybrid projective synchronization scheme and inverse full-state hybrid projective synchronization scheme have been designed to synchronize the three-dimensional fractional system with different four-dimensional fractional systems. Numerical examples have verified the proposed synchronization schemes.
引用
收藏
页数:13
相关论文
共 75 条
[61]   True random bit generation from a double-scroll attractor [J].
Yalçin, ME ;
Suykens, JAK ;
Vandewalle, J .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2004, 51 (07) :1395-1404
[62]   A chaotic system with one saddle and two stable node-foci [J].
Yang, Qigui ;
Chen, Guanrong .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (05) :1393-1414
[63]   Chaotic attractors of the conjugate Lorenz-type system [J].
Yang, Qigui ;
Chen, Guanrong ;
Huang, Kuifei .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (11) :3929-3949
[64]   A unified Lorenz-type system and its canonical form [J].
Yang, Qigui ;
Chen, Guangrong ;
Zhou, Tianshou .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (10) :2855-2871
[65]   AN UNUSUAL 3D AUTONOMOUS QUADRATIC CHAOTIC SYSTEM WITH TWO STABLE NODE-FOCI [J].
Yang, Qigui ;
Wei, Zhouchao ;
Chen, Guanrong .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (04) :1061-1083
[66]  
Yang XJ, 2017, ROM REP PHYS, V69
[67]   GENERAL FRACTIONAL-ORDER ANOMALOUS DIFFUSION WITH NON-SINGULAR POWER-LAW KERNEL [J].
Yang, Xiao-Jun ;
Srivastava, Hari Mohan ;
Torres, Delfim F. M. ;
Debbouche, Arnar .
THERMAL SCIENCE, 2017, 21 :S1-S9
[68]  
Yang XJ, 2017, P ROMANIAN ACAD A, V18, P231
[69]   A New Family of the Local Fractional PDEs [J].
Yang, Xiao-Jun ;
Tenreiro Machado, J. A. ;
Nieto, Juan J. .
FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) :63-75
[70]   On a fractal LC-electric circuit modeled by local fractional calculus [J].
Yang, Xiao-Jun ;
Tenreiro Machado, J. A. ;
Cattani, Carlo ;
Gao, Feng .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 47 :200-206