A fractional-order form of a system with stable equilibria and its synchronization

被引:13
作者
Wang, Xiong [1 ]
Ouannas, Adel [2 ]
Viet-Thanh Pham [3 ]
Abdolmohammadi, Hamid Reza [4 ]
机构
[1] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Guangdong, Peoples R China
[2] Univ Larbi Tebessi, Dept Math & Comp Sci, Tebessa 12002, Algeria
[3] Ton Duc Thang Univ, Modeling Evolutionary Algorithms Simulat & Artifi, Fac Elect & Elect Engn, Ho Chi Minh City, Vietnam
[4] Golpayegan Univ Technol, Dept Elect Engn, Golpayegan, Iran
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2018年
基金
中国国家自然科学基金;
关键词
chaos; equilibrium; hidden attractor; fractional order; synchronization; CHAOTIC AUTONOMOUS SYSTEM; SPROTT C SYSTEM; CIRCUIT-DESIGN; PROJECTIVE SYNCHRONIZATION; LYAPUNOV FUNCTIONS; DYNAMICAL ANALYSIS; HIDDEN ATTRACTORS; MULTISTABILITY; IMPLEMENTATION; STABILITY;
D O I
10.1186/s13662-018-1479-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There has been an increasing interest in studying fractional-order chaotic systems and their synchronization. In this paper, the fractional-order form of a system with stable equilibrium is introduced. It is interesting that such a three-dimensional fractional system can exhibit chaotic attractors. Full-state hybrid projective synchronization scheme and inverse full-state hybrid projective synchronization scheme have been designed to synchronize the three-dimensional fractional system with different four-dimensional fractional systems. Numerical examples have verified the proposed synchronization schemes.
引用
收藏
页数:13
相关论文
共 75 条
  • [61] True random bit generation from a double-scroll attractor
    Yalçin, ME
    Suykens, JAK
    Vandewalle, J
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2004, 51 (07) : 1395 - 1404
  • [62] A chaotic system with one saddle and two stable node-foci
    Yang, Qigui
    Chen, Guanrong
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (05): : 1393 - 1414
  • [63] Chaotic attractors of the conjugate Lorenz-type system
    Yang, Qigui
    Chen, Guanrong
    Huang, Kuifei
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (11): : 3929 - 3949
  • [64] A unified Lorenz-type system and its canonical form
    Yang, Qigui
    Chen, Guangrong
    Zhou, Tianshou
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (10): : 2855 - 2871
  • [65] AN UNUSUAL 3D AUTONOMOUS QUADRATIC CHAOTIC SYSTEM WITH TWO STABLE NODE-FOCI
    Yang, Qigui
    Wei, Zhouchao
    Chen, Guanrong
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (04): : 1061 - 1083
  • [66] Yang XJ, 2017, ROM REP PHYS, V69
  • [67] GENERAL FRACTIONAL-ORDER ANOMALOUS DIFFUSION WITH NON-SINGULAR POWER-LAW KERNEL
    Yang, Xiao-Jun
    Srivastava, Hari Mohan
    Torres, Delfim F. M.
    Debbouche, Arnar
    [J]. THERMAL SCIENCE, 2017, 21 : S1 - S9
  • [68] Yang XJ, 2017, P ROMANIAN ACAD A, V18, P231
  • [69] A New Family of the Local Fractional PDEs
    Yang, Xiao-Jun
    Tenreiro Machado, J. A.
    Nieto, Juan J.
    [J]. FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 63 - 75
  • [70] On a fractal LC-electric circuit modeled by local fractional calculus
    Yang, Xiao-Jun
    Tenreiro Machado, J. A.
    Cattani, Carlo
    Gao, Feng
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 47 : 200 - 206