Periodic solutions of a system of linear difference equations with continuous argument

被引:0
作者
Blizorukov, MG [1 ]
Dolgii, YF [1 ]
机构
[1] Ural State Univ, Yekaterinburg, Russia
基金
俄罗斯基础研究基金会;
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Periodic Solution; Functional Equation;
D O I
10.1023/A:1019239809537
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:568 / 577
页数:10
相关论文
共 50 条
[31]   Periodic Solutions of Nonlinear Nonautonomous Systems of Ordinary Differential Equations [J].
M. T. Terekhin ;
N. V. Retyunskikh .
Differential Equations, 2001, 37 :598-602
[32]   On Periodic Solutions of Higher-Order Functional Differential Equations [J].
I Kiguradze ;
N Partsvania ;
B Půža .
Boundary Value Problems, 2008
[33]   Periodic solutions of asymptotically linear second order equations with indefinite weight [J].
Dambrosio W. ;
Papini D. .
Annali di Matematica Pura ed Applicata, 2004, 183 (4) :537-554
[34]   Existence of Periodic Solutions of Linear Hamiltonian Systems with Sublinear Perturbation [J].
Zhiqing Han .
Boundary Value Problems, 2010
[35]   Convergence Estimates for Solutions of Linear Stationary Systems of Differential-Difference Equations with Constant Delay [J].
D. Ya. Khusainov ;
A. F. Ivanov ;
A. T. Kozhametov .
Differential Equations, 2005, 41 :1196-1200
[36]   Convergence estimates for solutions of linear stationary systems of differential-difference equations with constant delay [J].
Khusainov, DY ;
Ivanov, AF ;
Kozhametov, AT .
DIFFERENTIAL EQUATIONS, 2005, 41 (08) :1196-1200
[37]   On linear Volterra difference equations with infinite delay [J].
Ch G Philos ;
IK Purnaras .
Advances in Difference Equations, 2006
[38]   On the existence of periodic solutions of nonlinear difference equations [J].
Pelyukh G.P. .
Ukrainian Mathematical Journal, 2002, 54 (12) :1971-1981
[39]   Periodic solutions of difference equations with general periodicity [J].
Agarwal, RP ;
Zhang, WN .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (3-5) :719-727
[40]   On the exponential stability of the zero solution of an almost linear system of finite-difference equations [J].
Lasunskii, AV .
DIFFERENTIAL EQUATIONS, 2006, 42 (04) :591-594