A Spatio-Temporal Neural Network for Fine-Scale Wind Field Nowcasting Based on Lidar Observation

被引:7
|
作者
Gao, Hang [1 ,2 ]
Shen, Chun [1 ,2 ]
Zhou, Yi [3 ]
Wang, Xuesong [1 ,2 ]
Chan, Pak-Wai [4 ]
Hon, Kai-Kwong [4 ]
Zhou, Dingfu [5 ]
Li, Jianbing [1 ,2 ]
机构
[1] Natl Univ Def Technol, State Key Lab Complex Electromagnet Environm Effe, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Peoples R China
[3] Naval Res Acad, Shanghai 200000, Peoples R China
[4] Hong Kong Observ, Hong Kong, Peoples R China
[5] South West Inst Tech Phys, Chengdu 610000, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser radar; Wind forecasting; Wind; Radar; Radar measurements; Optical sensors; Kernel; Lidar observation; nowcasting; spatio-temporal; wind field; PARAMETER-RETRIEVAL; DOPPLER LIDAR; WAKE-VORTEX; SYSTEM; RADAR; PROFILES;
D O I
10.1109/JSTARS.2022.3189037
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fine-scale wind field nowcasting is of great significance in air traffic management, power grid operation, and so on. In this article, an indirect wind field nowcasting scheme based on lidar observation is presented, which contains an encoder-forecaster network based on the convolutional long short-term memory with balanced structure and a mask branch. The proposed nowcasting network is trained and evaluated based on the lidar observations throughout 2020 at Hong Kong International Airport. Comprehensive comparison with nine methods including the widely used optical flow technique and classic neural network show the good performance of the new network. It can capture the spatio-temporal features in the lidar observations and obtain better nowcasting results up to 27 min with a resolution of 100 m. The nowcasting errors are smaller than the retrieval errors reported in recent literature, demonstrating that the lidar observation nowcasting based on the new network can get fine-scale wind field nowcasting results with high efficiency.
引用
收藏
页码:5596 / 5606
页数:11
相关论文
共 50 条
  • [1] A Spatio-Temporal Neural Network for Fine-Scale Wind Field Nowcasting Based on Lidar Observation
    Gao, Hang
    Shen, Chun
    Zhou, Yi
    Wang, Xuesong
    Chan, Pak-Wai
    Hon, Kai-Kwong
    Zhou, Dingfu
    Li, Jianbing
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15 : 5596 - 5606
  • [2] A SPATIO-TEMPORAL ANALYSIS OF FINE-SCALE VELOCITY FIELDS IN PHOTOSPHERE
    FRAZIER, E
    ASTRONOMICAL JOURNAL, 1968, 73 (5P2): : S61 - &
  • [3] Spatio-Temporal Effect on Soil Respiration in Fine-Scale Patches in a Desert Ecosystem
    S. PEN-MOURATOV
    M. RAKHIMBAEV
    Y. STEINBERGER
    Pedosphere, 2006, (01) : 1 - 9
  • [4] Resolving fine-scale spatio-temporal dynamics in the harbour porpoise Phocoena phocoena
    Skov, Henrik
    Thomsen, Frank
    MARINE ECOLOGY PROGRESS SERIES, 2008, 373 : 173 - 186
  • [5] Spatio-temporal effect on soil respiration in fine-scale patches in a desert ecosystem
    Pen-Mouratov, S
    Rakhimbaev, M
    Steinberger, Y
    PEDOSPHERE, 2006, 16 (01) : 1 - 9
  • [6] Spatio-temporal coexistence of sympatric mesocarnivores with a single apex carnivore in a fine-scale landscape
    Zhao, Guojing
    Yang, Haitao
    Xie, Bing
    Gong, Yinan
    Ge, Jianping
    Feng, Limin
    GLOBAL ECOLOGY AND CONSERVATION, 2020, 21
  • [7] Fine-scale hydrodynamics influence the spatio-temporal distribution of harbour porpoises at a coastal hotspot
    Jones, A. R.
    Hosegood, P.
    Wynn, R. B.
    De Boer, M. N.
    Butler-Cowdry, S.
    Embling, C. B.
    PROGRESS IN OCEANOGRAPHY, 2014, 128 : 30 - 48
  • [8] Southern Horse Mackerel (Trachurus trachurus) Spatio-Temporal Distribution Patterns Based on Fine-Scale Resolution Data
    Mendes, Hugo
    Silva, Cristina
    Azevedo, Manuela
    FISHES, 2024, 9 (03)
  • [9] On the suitability of a convolutional neural network based RCM-emulator for fine spatio-temporal precipitation
    Doury, Antoine
    Somot, Samuel
    Gadat, Sebastien
    CLIMATE DYNAMICS, 2024, 62 (09) : 8587 - 8613
  • [10] Spatio-temporal processes drive fine-scale genetic structure in an otherwise panmictic seabird population
    Lucy J. H. Garrett
    Julia P. Myatt
    Jon P. Sadler
    Deborah A. Dawson
    Helen Hipperson
    John K. Colbourne
    Roger C. Dickey
    Sam B. Weber
    S. James Reynolds
    Scientific Reports, 10