Deep Learning Enhanced Contrast Source Inversion for Microwave Breast Cancer Imaging Modality

被引:6
|
作者
Hirose, Umita [1 ]
Zhu, Peixian [1 ]
Kidera, Shouhei [1 ]
机构
[1] Univ Electrocommun, Grad Sch Informat & Engn, Chofu, Tokyo 1828585, Japan
来源
IEEE JOURNAL OF ELECTROMAGNETICS RF AND MICROWAVES IN MEDICINE AND BIOLOGY | 2022年 / 6卷 / 03期
关键词
Image reconstruction; Training; Microwave imaging; Permittivity; Transmitters; Receivers; Microwave theory and techniques; Convolutional auto-encoder (CAE); contrast source inversion (CSI); deep learning; inverse scattering analysis; microwave ultra wide-band (UWB) breast cancer detection; CONVOLUTIONAL NEURAL-NETWORK; SCATTERING;
D O I
10.1109/JERM.2021.3127110
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study presents a deep-learning (DL) based contrast source inversion (CSI) algorithm for quantitative microwave breast cancer imaging. Inverse scattering analysis for quantitative dielectric profile reconstruction is promising for a higher recognition rate for cancer detection, especially for malignant breast tumors. We focus on CSI as a low complexity approach, and implement a deep convolutional autoencorder (CAE) scheme using radar raw-data, which enhances the convergence speed and reconstruction accuracy. Numerical tests using MRI-derived realistic phantoms demonstrate that the proposed method significantly enhances the reconstruction performance of the CSI.
引用
收藏
页码:373 / 379
页数:7
相关论文
共 50 条
  • [21] Automatic deep learning method for detection and classification of breast lesions in dynamic contrast-enhanced magnetic resonance imaging
    Gao, Weibo
    Chen, Jixin
    Zhang, Bin
    Wei, Xiaocheng
    Zhong, Jinman
    Li, Xiaohui
    He, Xiaowei
    Zhao, Fengjun
    Chen, Xin
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (04) : 2620 - +
  • [22] A modified contrast source inversion method for microwave tomographic imaging of Debye dispersive media
    Liu, Guangdong
    Zhang, Kaiyin
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (06) : 2281 - 2291
  • [23] Domain generalization in deep learning for contrast-enhanced imaging
    Sendra-Balcells, Carla
    Campello, Victor M.
    Martin-Isla, Carlos
    Vilades, David
    Descalzo, Martin L.
    Guala, Andrea
    Rodriguez-Palomares, Jose F.
    Lekadir, Karim
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 149
  • [24] Deep learning for breast cancer classification: Enhanced tangent function
    Thapa, Ashu
    Alsadoon, Abeer
    Prasad, P. W. C.
    Bajaj, Simi
    Alsadoon, Omar Hisham
    Rashid, Tarik A.
    Ali, Rasha S.
    Jerew, Oday D.
    COMPUTATIONAL INTELLIGENCE, 2022, 38 (02) : 506 - 529
  • [25] An Effective Framework for Deep-Learning-Enhanced Quantitative Microwave Imaging and Its Potential for Medical Applications
    Ruiz, Alvaro Yago
    Cavagnaro, Marta
    Crocco, Lorenzo
    SENSORS, 2023, 23 (02)
  • [26] Microwave Tomography Using Random Multiple-Input-Multiple-Output Contrast Source Inversion
    Guo, Lei
    Nghia Nguyen-Trong
    Phong Nguyen
    Bialkowski, Konstanty
    Abbosh, Amin
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (08): : 1369 - 1373
  • [27] Surface impedance based microwave imaging method for breast cancer screening: contrast-enhanced scenario
    Guren, Onan
    Cayoren, Mehmet
    Ergene, Lale Tukenmez
    Akduman, Ibrahim
    PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (19) : 5725 - 5739
  • [28] Application of Deep Learning in Breast Cancer Imaging
    Balkenende, Luuk
    Teuwen, Jonas
    Mann, Ritse M.
    SEMINARS IN NUCLEAR MEDICINE, 2022, 52 (05) : 584 - 596
  • [29] Microwave Imaging by Deep Learning Network: Feasibility and Training Method
    Shao, Wenyi
    Du, Yong
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (07) : 5626 - 5635
  • [30] Hyperthermia Treatment Monitoring via Deep Learning Enhanced Microwave Imaging: A Numerical Assessment
    Yago Ruiz, Alvaro
    Cavagnaro, Marta
    Crocco, Lorenzo
    CANCERS, 2023, 15 (06)