Privacy-Preserving Household Characteristic Identification With Federated Learning Method

被引:18
|
作者
Lin, Jun [1 ]
Ma, Jin [1 ]
Zhu, Jianguo [1 ]
机构
[1] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Load modeling; Training; Servers; Data models; Computational modeling; Convolutional neural networks; Delays; Household characteristics; privacy preservation; federated learning; deep learning network;
D O I
10.1109/TSG.2021.3125677
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Understanding residential household characteristics is crucial for retailers to provide customers personalized services. Current methods infer household characteristics from smart meter data in a centralized manner that requires the data of all retailers to be gathered together for model training. This may raise privacy concerns since the privacy-sensitive data are owned by different retailers, and they may be unwilling to share the raw data. This paper proposes a federated learning (FL) based deep learning model to identify household characteristics. A hybrid model combining the convolutional neural network and long short-term neural network is designed to learn spatial-temporal features from load profiles. It is implemented in a decentralized manner based on the FL framework. To improve the training speed and accuracy, an asynchronous stochastic gradient descent with delay compensation method is proposed to update the global model parameters. Comprehensive experiments are conducted to verify the effectiveness of the proposed method.
引用
收藏
页码:1088 / 1099
页数:12
相关论文
共 50 条
  • [1] Federated Learning for Privacy-Preserving Speaker Recognition
    Woubie, Abraham
    Backstrom, Tom
    IEEE ACCESS, 2021, 9 : 149477 - 149485
  • [2] A Lightweight and Accuracy-Lossless Privacy-Preserving Method in Federated Learning
    Liu, Zhen
    Yang, Changsong
    Ding, Yong
    Liang, Hai
    Wang, Yujue
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (03): : 3118 - 3129
  • [3] Toward Secure Weighted Aggregation for Privacy-Preserving Federated Learning
    He, Yunlong
    Yu, Jia
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 3475 - 3488
  • [4] PPFed: A Privacy-Preserving and Personalized Federated Learning Framework
    Zhang, Guangsheng
    Liu, Bo
    Zhu, Tianqing
    Ding, Ming
    Zhou, Wanlei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19380 - 19393
  • [5] Communication-Efficient Personalized Federated Learning With Privacy-Preserving
    Wang, Qian
    Chen, Siguang
    Wu, Meng
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 2374 - 2388
  • [6] Privacy-Preserving Data Selection for Horizontal and Vertical Federated Learning
    Zhang, Lan
    Li, Anran
    Peng, Hongyi
    Han, Feng
    Huang, Fan
    Li, Xiang-Yang
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (11) : 2054 - 2068
  • [7] Privacy-Preserving Multilayer Community Detection via Federated Learning
    Ma, Shi-Yao
    Xu, Xiao-Ke
    Xiao, Jing
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024,
  • [8] Privacy-Preserving Aggregation for Federated Learning-Based Navigation in Vehicular Fog
    Kong, Qinglei
    Yin, Feng
    Lu, Rongxing
    Li, Beibei
    Wang, Xiaohong
    Cui, Shuguang
    Zhang, Ping
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (12) : 8453 - 8463
  • [9] Privacy-Preserving Heterogeneous Personalized Federated Learning With Knowledge
    Pan, Yanghe
    Su, Zhou
    Ni, Jianbing
    Wang, Yuntao
    Zhou, Jinhao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5969 - 5982
  • [10] Hercules: Boosting the Performance of Privacy-Preserving Federated Learning
    Xu, Guowen
    Han, Xingshuo
    Xu, Shengmin
    Zhang, Tianwei
    Li, Hongwei
    Huang, Xinyi
    Deng, Robert H.
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (05) : 4418 - 4433