Symmetry and rigidity for the hinged composite plate problem

被引:12
作者
Colasuonno, Francesca [1 ]
Vecchi, Eugenio [2 ]
机构
[1] Univ Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Sapienza Univ Roma, Dipartimento Matemat Guido Castelnuovo, Ple Aldo Moro 5, I-00185 Rome, Italy
关键词
Composite plate problem; Biharmonic operator; Navier boundary conditions; Moving plane method; Symmetry of solutions; Rigidity results; SYSTEMS; MINIMIZERS; REGULARITY; UNIQUENESS; 2ND-ORDER; DOMAINS;
D O I
10.1016/j.jde.2018.10.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The composite plate problem is an eigenvalue optimization problem related to the fourth order operator (-Delta)(2). In this paper we continue the study started in [10], focusing on symmetry and rigidity issues in the case of the hinged composite plate problem, a specific situation that allows us to exploit classical techniques like the moving plane method. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:4901 / 4924
页数:24
相关论文
共 35 条
[1]  
[Anonymous], 1964, Czechoslovak Math. J
[3]  
Berestycki H., 1991, Bol. Soc. Bras. Mat., V22, P1, DOI DOI 10.1007/BF01244896
[4]   On Hopf's Lemma and the Strong Maximum Principle [J].
Bertone, S ;
Cellina, A ;
Marchini, EM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (05) :701-733
[5]  
BIRINDELLI I, 1999, DIFF URAVN, V35, P325
[6]   Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes [J].
Chanillo, S ;
Grieser, D ;
Imai, M ;
Kurata, K ;
Ohnishi, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (02) :315-337
[7]  
Chanillo S., 2000, Contemp. Math, V268, P61, DOI DOI 10.1090/CONM/268/04308
[8]  
Chanillo S, 2008, J EUR MATH SOC, V10, P705
[9]   Conformal Geometry and the Composite Membrane Problem [J].
Chanillo, Sagun .
ANALYSIS AND GEOMETRY IN METRIC SPACES, 2013, 1 :31-35
[10]   Regularity of the minimizers in the composite membrane problem in R2 [J].
Chanillo, Sagun ;
Kenig, Carlos E. ;
To, Tung .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (09) :2299-2320