Real-time source apportionment of fine particle inorganic and organic constituents at an urban site in Delhi city: An IoT-based approach

被引:15
作者
Prakash, Jai [1 ]
Choudhary, Shruti [1 ,3 ]
Raliya, Ramesh [1 ]
Chadha, Tandeep S. [2 ]
Fang, Jiaxi [2 ]
Biswas, Pratim [1 ,3 ]
机构
[1] Washington Univ, Dept Energy Environm & Chem Engn, Aerosol & Air Qual Res Lab, St Louis, MO 63130 USA
[2] Appl Particle Technol Inc, St Louis, MO USA
[3] Univ Miami, Coll Engn, Coral Gables, FL 33146 USA
基金
美国国家科学基金会;
关键词
PM2.5; Real-time source apportionment; CMB; IoT-platform; Air-shed sources; Delhi; AMBIENT PARTICULATE MATTER; CHEMICAL SOURCE PROFILES; SUBMICRON AEROSOL; BLACK CARBON; AIR-QUALITY; SOUTH-ASIA; PM2.5; MASS; EMISSIONS; INDIA; REGION;
D O I
10.1016/j.apr.2021.101206
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An Internet of things (IoT) based real-time source apportionment methodology of PM2.5 aerosol was developed and demonstrated for an urban site in Delhi city, India. A dashboard was designed and developed to display in real-time the data from low-cost PM sensors, PM2.5 chemical speciation monitors data, and source apportionment results using a chemical mass balance (CMB) algorithm performed on an IoT platform. Ten source profiles were used in CMB modeling for the urban site of Delhi. Major contributing source categories were identified as biomass burning, soil dust, vehicle, coal combustion, waste burning, industries, and secondary aerosol. Biomass burning and secondary aerosol was a significant contributor in autumn and winter (23-30%), while soil dust exhibited highs during summer. The vehicle sources remained consistent over the year with an similar to 8-12% contribution. Similarly, consistent seasonal contributions of waste burning, and industries were observed. Coal combustion was found to be a substantial contributor in Delhi during the monsoon and summer; primarily from regional power plants outside the Delhi region, and/or from smaller-scale industrial outfits in the vicinity of the Delhi region. Hourly resolved sources of fine particles were displayed in real-time on a customized dashboard. This is the first such demonstration of an IoT-based real-time source apportionment in India (and in many parts of the world). The approach developed could be a resource to identify and control emissions from local and regional sources in real-time, and actions to curtail air quality and health detriment in a scientifically sound manner.
引用
收藏
页数:17
相关论文
共 66 条
[1]   Source apportionment of the ambient PM2.5 across St. Louis using constrained positive matrix factorization [J].
Amato, Fulvio ;
Hopke, Philip K. .
ATMOSPHERIC ENVIRONMENT, 2012, 46 :329-337
[2]  
[Anonymous], 2008, Ambient Air Quality Monitoring and Emission Source Apportionment Studies
[3]  
[Anonymous], 2011, CUPS/77/2010-11
[4]  
[Anonymous], 2012, Criteria for Categorization of CPSEs
[5]  
Belis C., 2014, European Guide on Air Pollution Source Apportionment with Receptor Models, DOI DOI 10.2788/9307
[6]   A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises [J].
Belis, C. A. ;
Karagulian, F. ;
Amato, F. ;
Almeida, M. ;
Artaxo, P. ;
Beddows, D. C. S. ;
Bernardoni, V. ;
Bove, M. C. ;
Carbone, S. ;
Cesari, D. ;
Contini, D. ;
Cuccia, E. ;
Diapouli, E. ;
Eleftheriadis, K. ;
Favez, O. ;
El Haddad, I. ;
Harrison, R. M. ;
Hellebust, S. ;
Hovorka, J. ;
Jang, E. ;
Jorquera, H. ;
Kammermeier, T. ;
Karl, M. ;
Lucarelli, F. ;
Mooibroek, D. ;
Nava, S. ;
Nojgaard, J. K. ;
Paatero, P. ;
Pandolfi, M. ;
Perrone, M. G. ;
Petit, J. E. ;
Pietrodangelo, A. ;
Pokorna, P. ;
Prati, P. ;
Prevot, A. S. H. ;
Quass, U. ;
Querol, X. ;
Saraga, D. ;
Sciare, J. ;
Sfetsos, A. ;
Valli, G. ;
Vecchi, R. ;
Vestenius, M. ;
Yubero, E. ;
Hopke, P. K. .
ATMOSPHERIC ENVIRONMENT, 2015, 123 :240-250
[7]   Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe [J].
Belis, C. A. ;
Karagulian, F. ;
Larsen, B. R. ;
Hopke, P. K. .
ATMOSPHERIC ENVIRONMENT, 2013, 69 :94-108
[8]   Sources and atmospheric dynamics of organic aerosol in New Delhi, India: insights from receptor modeling [J].
Bhandari, Sahil ;
Gani, Shahzad ;
Patel, Kanan ;
Wang, Dongyu S. ;
Soni, Prashant ;
Arub, Zainab ;
Habib, Gazala ;
Apte, Joshua S. ;
Hildebrandt Ruiz, Lea .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (02) :735-752
[9]   Bounding the role of black carbon in the climate system: A scientific assessment [J].
Bond, T. C. ;
Doherty, S. J. ;
Fahey, D. W. ;
Forster, P. M. ;
Berntsen, T. ;
DeAngelo, B. J. ;
Flanner, M. G. ;
Ghan, S. ;
Kaercher, B. ;
Koch, D. ;
Kinne, S. ;
Kondo, Y. ;
Quinn, P. K. ;
Sarofim, M. C. ;
Schultz, M. G. ;
Schulz, M. ;
Venkataraman, C. ;
Zhang, H. ;
Zhang, S. ;
Bellouin, N. ;
Guttikunda, S. K. ;
Hopke, P. K. ;
Jacobson, M. Z. ;
Kaiser, J. W. ;
Klimont, Z. ;
Lohmann, U. ;
Schwarz, J. P. ;
Shindell, D. ;
Storelvmo, T. ;
Warren, S. G. ;
Zender, C. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) :5380-5552
[10]   A one-year comprehensive chemical characterisation of fine aerosol (PM2.5) at urban, suburban and rural background sites in the region of Paris (France) [J].
Bressi, M. ;
Sciare, J. ;
Ghersi, V. ;
Bonnaire, N. ;
Nicolas, J. B. ;
Petit, J. -E. ;
Moukhtar, S. ;
Rosso, A. ;
Mihalopoulos, N. ;
Feron, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (15) :7825-7844