Gradient estimates for nonlinear elliptic equations with a gradient-dependent nonlinearity

被引:2
作者
Ching, Joshua [1 ]
Cirstea, Florica C. [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
gradient bounds; Liouville results; a priori estimates; quasilinear elliptic equations; SINGULAR SOLUTIONS; EXISTENCE; DIRICHLET;
D O I
10.1017/prm.2018.133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain gradient estimates of the positive solutions to weighted p-Laplacian type equations with a gradient-dependent nonlinearity of the form div|x|s|.u|p-2. u = |x|-tuq|.u|m in O* := O \ {0}. (0.1) Here, O. RN denotes a domain containing the origin with N2, whereas m, q. [0,8), 1 < pN + s and q > max{p - m - 1, s + t - 1}. The main difficulty arises from the dependence of the right-hand side of (0.1) on x, u and |.u|, without any upper bound restriction on the power m of |.u|. Our proof of the gradient estimates is based on a two-step process relying on a modified version of the Bernstein's method. As a by-product, we extend the range of applicability of the Liouville-type results known for (0.1).
引用
收藏
页码:1361 / 1376
页数:16
相关论文
共 50 条
  • [1] Elliptic Equations with Hardy Potential and Gradient-Dependent Nonlinearity
    Gkikas, Konstantinos T.
    Phuoc-Tai Nguyen
    ADVANCED NONLINEAR STUDIES, 2020, 20 (02) : 399 - 435
  • [2] Gradient estimates for singular fully nonlinear elliptic equations
    Lieberman, Gary M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 119 : 382 - 397
  • [3] Singular anisotropic elliptic equations with gradient-dependent lower order terms
    Brandolini, Barbara
    Cirstea, Florica C. C.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (05):
  • [4] SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS WITH A GRADIENT
    Wang, Ying
    Wang, Mingxin
    ACTA MATHEMATICA SCIENTIA, 2015, 35 (05) : 1023 - 1036
  • [5] GRADIENT ESTIMATES AND COMPARISON PRINCIPLE FOR SOME NONLINEAR ELLIPTIC EQUATIONS
    Betta, Maria Francesca
    Di Nardo, Rosaria
    Mercaldo, Anna
    Perrotta, Adamaria
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (03) : 897 - 922
  • [6] A priori estimates for elliptic equations with gradient dependent term and zero order term
    Alvino, A.
    Betta, M. F.
    Mercaldo, A.
    Volpicelli, R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 302 : 550 - 584
  • [7] Gradient estimates of general nonlinear singular elliptic equations with measure data
    Zhang, Junjie
    Zheng, Shenzhou
    Feng, Zhaosheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 372 : 402 - 457
  • [8] Interior gradient estimates for quasilinear elliptic equations
    Truyen Nguyen
    Tuoc Phan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (03)
  • [9] Anisotropic elliptic equations with gradient-dependent lower order terms and L1 data
    Brandolini, Barbara
    Cirstea, Florica C.
    MATHEMATICS IN ENGINEERING, 2023, 5 (04): : 1 - 33
  • [10] Semilinear elliptic equations with Hardy potential and gradient nonlinearity
    Gkikas, Konstantinos
    Phuoc-Tai Nguyen
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (04) : 1207 - 1256