Genomic Prediction for Quantitative Traits Is Improved by Mapping Variants to Gene Ontology Categories in Drosophila melanogaster

被引:93
作者
Edwards, Stefan M. [1 ,2 ,3 ]
Sorensen, Izel F. [1 ]
Sarup, Pernille [1 ]
Mackay, Trudy F. C. [4 ,5 ]
Sorensen, Peter [1 ]
机构
[1] Aarhus Univ, Dept Mol Biol & Genet, Ctr Quantitat Genet & Genom, DK-8830 Tjele, Denmark
[2] Univ Edinburgh, Roslin Inst, Easter Bush EH25 9RG, Midlothian, Scotland
[3] Univ Edinburgh, Royal Dick Sch Vet Studies, Easter Bush EH25 9RG, Midlothian, Scotland
[4] North Carolina State Univ, Dept Biol Sci, Raleigh, NC 27695 USA
[5] North Carolina State Univ, Genet Program, Raleigh, NC 27695 USA
基金
美国国家卫生研究院;
关键词
genomic feature models; best linear unbiased prediction; Drosophila Genetic Reference Population; startle response; starvation resistance; chill coma recovery time; genomic selection; GenPred; shared data resource; PARTITIONING HERITABILITY; COMPLEX TRAITS; ARCHITECTURE; POPULATIONS; SELECTION; LOCI; GWAS;
D O I
10.1534/genetics.116.187161
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Predicting individual quantitative trait phenotypes from high-resolution genomic polymorphism data is important for personalized medicine in humans, plant and animal breeding, and adaptive evolution. However, this is difficult for populations of unrelated individuals when the number of causal variants is low relative to the total number of polymorphisms and causal variants individually have small effects on the traits. We hypothesized that mapping molecular polymorphisms to genomic features such as genes and their gene ontology categories could increase the accuracy of genomic prediction models. We developed a genomic feature best linear unbiased prediction (GFBLUP) model that implements this strategy and applied it to three quantitative traits (startle response, starvation resistance, and chill coma recovery) in the unrelated, sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel. Our results indicate that subsetting markers based on genomic features increases the predictive ability relative to the standard genomic best linear unbiased prediction (GBLUP) model. Both models use all markers, but GFBLUP allows differential weighting of the individual genetic marker relationships, whereas GBLUP weighs the genetic marker relationships equally. Simulation studies show that it is possible to further increase the accuracy of genomic prediction for complex traits using this model, provided the genomic features are enriched for causal variants. Our GFBLUP model using prior information on genomic features enriched for causal variants can increase the accuracy of genomic predictions in populations of unrelated individuals and provides a formal statistical framework for leveraging and evaluating information across multiple experimental studies to provide novel insights into the genetic architecture of complex traits.
引用
收藏
页码:1871 / +
页数:15
相关论文
共 57 条
[1]   Hundreds of variants clustered in genomic loci and biological pathways affect human height [J].
Allen, Hana Lango ;
Estrada, Karol ;
Lettre, Guillaume ;
Berndt, Sonja I. ;
Weedon, Michael N. ;
Rivadeneira, Fernando ;
Willer, Cristen J. ;
Jackson, Anne U. ;
Vedantam, Sailaja ;
Raychaudhuri, Soumya ;
Ferreira, Teresa ;
Wood, Andrew R. ;
Weyant, Robert J. ;
Segre, Ayellet V. ;
Speliotes, Elizabeth K. ;
Wheeler, Eleanor ;
Soranzo, Nicole ;
Park, Ju-Hyun ;
Yang, Jian ;
Gudbjartsson, Daniel ;
Heard-Costa, Nancy L. ;
Randall, Joshua C. ;
Qi, Lu ;
Smith, Albert Vernon ;
Maegi, Reedik ;
Pastinen, Tomi ;
Liang, Liming ;
Heid, Iris M. ;
Luan, Jian'an ;
Thorleifsson, Gudmar ;
Winkler, Thomas W. ;
Goddard, Michael E. ;
Lo, Ken Sin ;
Palmer, Cameron ;
Workalemahu, Tsegaselassie ;
Aulchenko, Yurii S. ;
Johansson, Asa ;
Zillikens, M. Carola ;
Feitosa, Mary F. ;
Esko, Tonu ;
Johnson, Toby ;
Ketkar, Shamika ;
Kraft, Peter ;
Mangino, Massimo ;
Prokopenko, Inga ;
Absher, Devin ;
Albrecht, Eva ;
Ernst, Florian ;
Glazer, Nicole L. ;
Hayward, Caroline .
NATURE, 2010, 467 (7317) :832-838
[2]  
[Anonymous], 5 WORLD C GEN APPL L
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Systems genetics of complex traits in Drosophila melanogaster [J].
Ayroles, Julien F. ;
Carbone, Mary Anna ;
Stone, Eric A. ;
Jordan, Katherine W. ;
Lyman, Richard F. ;
Magwire, Michael M. ;
Rollmann, Stephanie M. ;
Duncan, Laura H. ;
Lawrence, Faye ;
Anholt, Robert R. H. ;
Mackay, Trudy F. C. .
NATURE GENETICS, 2009, 41 (03) :299-307
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   The Nature of Genetic Variation for Complex Traits Revealed by GWAS and Regional Heritability Mapping Analyses [J].
Caballero, Armando ;
Tenesa, Albert ;
Keightley, Peter D. .
GENETICS, 2015, 201 (04) :1601-+
[7]  
Carlson M., 2013, ORG DM EG DB GENOME
[8]   Mapping complex disease traits with global gene expression [J].
Cookson, William ;
Liang, Liming ;
Abecasis, Goncalo ;
Moffatt, Miriam ;
Lathrop, Mark .
NATURE REVIEWS GENETICS, 2009, 10 (03) :184-194
[9]   Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers [J].
Crossa, Jose ;
de los Campos, Gustavo ;
Perez, Paulino ;
Gianola, Daniel ;
Burgueno, Juan ;
Luis Araus, Jose ;
Makumbi, Dan ;
Singh, Ravi P. ;
Dreisigacker, Susanne ;
Yan, Jianbing ;
Arief, Vivi ;
Banziger, Marianne ;
Braun, Hans-Joachim .
GENETICS, 2010, 186 (02) :713-U406
[10]   Genomic Prediction in Animals and Plants: Simulation of Data, Validation, Reporting, and Benchmarking [J].
Daetwyler, Hans D. ;
Calus, Mario P. L. ;
Pong-Wong, Ricardo ;
de los Campos, Gustavo ;
Hickey, John M. .
GENETICS, 2013, 193 (02) :347-+