On commutators in p-groups

被引:11
作者
Kappe, LC [1 ]
Morse, RF
机构
[1] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
[2] Univ Evansville, Dept Elect Engn & Comp Sci, Evansville, IN 47722 USA
关键词
D O I
10.1515/jgth.2005.8.4.415
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each prime p, we determine the smallest integer n such that there exists a group of order p(n) in which the set of commutators does not form a subgroup. We show that n = 6 for any odd prime and n = 7 for p = 2.
引用
收藏
页码:415 / 429
页数:15
相关论文
共 16 条
  • [1] The groups of order at most 2000
    Besche, HU
    Eick, B
    O'Brien, EA
    [J]. ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 7 : 1 - 4
  • [2] Blackburn N., 1958, Proc. Cambridge Philos. Soc., V54, P327
  • [3] Carmichael RD, 1956, Introduction to the Theory of Groups of Finite Orders
  • [4] Dummit DS., 1991, Abstract algebra
  • [5] On Metabelian groups
    Fite, William Benjamin
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1902, 3 (1-4) : 331 - 353
  • [6] Guralnick R.M., 1980, ROCKY MOUNTAIN J MAT, V10, P651
  • [7] ON HP-PROBLEM FOR FINITE P-GROUPS
    HOGAN, GT
    KAPPE, WP
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) : 450 - &
  • [8] Huppert B., 1967, Endliche Gruppen I, VI
  • [9] Macdonald I. D., 1968, THEORY GROUPS
  • [10] MACHALE D, 1981, MATH MAG, V54, P23