The Twist Tensor Nuclear Norm for Video Completion

被引:175
作者
Hu, Wenrui [1 ]
Tao, Dacheng [2 ]
Zhang, Wensheng [1 ]
Xie, Yuan [1 ]
Yang, Yehui [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[2] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst, Ultimo, NSW 2007, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Low-rank tensor estimation (LRTE); tensor multirank; tensor nuclear norm (TNN); twist tensor; video completion; RANK; IMAGE; DECOMPOSITIONS; FACTORIZATION; FRAMEWORK;
D O I
10.1109/TNNLS.2016.2611525
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm (t-TNN). The twist tensor denotes a three-way tensor representation to laterally store 2-D data slices in order. On one hand, t-TNN convexly relaxes the tensor multirank of the twist tensor in the Fourier domain, which allows an efficient computation using fast Fourier transform. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a nonstationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.
引用
收藏
页码:2961 / 2973
页数:13
相关论文
共 52 条
  • [41] SOME MATHEMATICAL NOTES ON 3-MODE FACTOR ANALYSIS
    TUCKER, LR
    [J]. PSYCHOMETRIKA, 1966, 31 (03) : 279 - 279
  • [42] Wang H, 2014, AAAI CONF ARTIF INTE, P2846
  • [43] Space-time completion of video
    Wexler, Yonatan
    Shechtman, Eli
    Irani, Michal
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (03) : 463 - 476
  • [44] Multi-View Intact Space Learning
    Xu, Chang
    Tao, Dacheng
    Xu, Chao
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (12) : 2531 - 2544
  • [45] Large-Margin Multi-View Information Bottleneck
    Xu, Chang
    Tao, Dacheng
    Xu, Chao
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (08) : 1559 - 1572
  • [46] PARALLEL MATRIX FACTORIZATION FOR LOW-RANK TENSOR COMPLETION
    Xu, Yangyang
    Hao, Ruru
    Yin, Wotao
    Su, Zhixun
    [J]. INVERSE PROBLEMS AND IMAGING, 2015, 9 (02) : 601 - 624
  • [47] Robust Low-Rank Tensor Recovery With Regularized Redescending M-Estimator
    Yang, Yuning
    Feng, Yunlong
    Suykens, Johan A. K.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (09) : 1933 - 1946
  • [48] Ying Liu, 2015, 2015 IEEE MTT-S International Microwave Symposium (IMS2015), P1, DOI 10.1109/MWSYM.2015.7166740
  • [49] Image Completion: Survey and Comparative Study
    Zarif, Sameh
    Faye, Ibrahima
    Rohaya, Dayang
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (03)
  • [50] Novel methods for multilinear data completion and de-noising based on tensor-SVD
    Zhang, Zemin
    Ely, Gregory
    Aeron, Shuchin
    Hao, Ning
    Kilmer, Misha
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 3842 - 3849