The Twist Tensor Nuclear Norm for Video Completion

被引:175
作者
Hu, Wenrui [1 ]
Tao, Dacheng [2 ]
Zhang, Wensheng [1 ]
Xie, Yuan [1 ]
Yang, Yehui [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[2] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst, Ultimo, NSW 2007, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Low-rank tensor estimation (LRTE); tensor multirank; tensor nuclear norm (TNN); twist tensor; video completion; RANK; IMAGE; DECOMPOSITIONS; FACTORIZATION; FRAMEWORK;
D O I
10.1109/TNNLS.2016.2611525
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm (t-TNN). The twist tensor denotes a three-way tensor representation to laterally store 2-D data slices in order. On one hand, t-TNN convexly relaxes the tensor multirank of the twist tensor in the Fourier domain, which allows an efficient computation using fast Fourier transform. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a nonstationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.
引用
收藏
页码:2961 / 2973
页数:13
相关论文
共 52 条
  • [1] [Anonymous], FOUND TRENDS MACH LE
  • [2] Bertalmío M, 2001, PROC CVPR IEEE, P355
  • [3] Image inpainting
    Bertalmio, M
    Sapiro, G
    Caselles, V
    Ballester, C
    [J]. SIGGRAPH 2000 CONFERENCE PROCEEDINGS, 2000, : 417 - 424
  • [4] Third-order tensors as linear operators on a space of matrices
    Braman, Karen
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (07) : 1241 - 1253
  • [5] A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION
    Cai, Jian-Feng
    Candes, Emmanuel J.
    Shen, Zuowei
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) : 1956 - 1982
  • [6] Exact Matrix Completion via Convex Optimization
    Candes, Emmanuel J.
    Recht, Benjamin
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (06) : 717 - 772
  • [7] ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION
    CARROLL, JD
    CHANG, JJ
    [J]. PSYCHOMETRIKA, 1970, 35 (03) : 283 - &
  • [8] Simultaneous Tensor Decomposition and Completion Using Factor Priors
    Chen, Yi-Lei
    Hsu, Chiou-Ting
    Liao, Hong-Yuan Mark
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (03) : 577 - 591
  • [9] A multilinear singular value decomposition
    De Lathauwer, L
    De Moor, B
    Vandewalle, J
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) : 1253 - 1278
  • [10] TENSOR RANK AND THE ILL-POSEDNESS OF THE BEST LOW-RANK APPROXIMATION PROBLEM
    de Silva, Vin
    Lim, Lek-Heng
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) : 1084 - 1127