In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage

被引:252
作者
Chen, Zhongxue [1 ]
Zhou, Min [1 ]
Cao, Yuliang [1 ,2 ]
Ai, Xinping [1 ]
Yang, Hanxi [1 ]
Liu, Jun [2 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan 430072, Peoples R China
[2] Pacific NW Natl Lab, Richland, WA 99352 USA
基金
美国国家科学基金会;
关键词
tin oxide; few-layer graphene; conversion reactions; core-shell nanostructures; lithium-ion batteries; ELECTROCHEMICAL LITHIATION; ELECTRODE MATERIALS; AMORPHOUS OXIDE; ANODE MATERIAL; BATTERIES; CAPACITY; CARBON; TIN; COMPOSITE; NANOSTRUCTURES;
D O I
10.1002/aenm.201100464
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple ball-milling method is used to synthesize a tin oxide-silicon carbide/few-layer graphene core-shell structure in which nanometer-sized SnO2 particles are uniformly dispersed on a supporting SiC core and encapsulated with few-layer graphene coatings by in situ mechanical peeling. The SnO2-SiC/G nanocomposite material delivers a high reversible capacity of 810 mA h g-1 and 83% capacity retention over 150 charge/discharge cycles between 1.5 and 0.01 V at a rate of 0.1 A g-1. A high reversible capacity of 425 mA h g-1 also can be obtained at a rate of 2 A g-1. When discharged (Li extraction) to a higher potential at 3.0 V (vs. Li/Li+), the SnO2-SiC/G nanocomposite material delivers a reversible capacity of 1451 mA h g-1 (based on the SnO2 mass), which corresponds to 97% of the expected theoretical capacity (1494 mA h g-1, 8.4 equivalent of lithium per SnO2), and exhibits good cyclability. This result suggests that the core-shell nanostructure can achieve a completely reversible transformation from Li4.4Sn to SnO2 during discharging (i.e., Li extraction by dealloying and a reversible conversion reaction, generating 8.4 electrons). This suggests that simple mechanical milling can be a powerful approach to improve the stability of high-performance electrode materials involving structural conversion and transformation.
引用
收藏
页码:95 / 102
页数:8
相关论文
共 53 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[3]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[4]   SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries [J].
Chen, Jun Song ;
Cheah, Yan Ling ;
Chen, Yuan Ting ;
Jayaprakash, N. ;
Madhavi, Srinivasan ;
Yang, Yan Hui ;
Lou, Xiong Wen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20504-20508
[5]   Antimony-Coated SiC Nanoparticles as Stable and High-Capacity Anode Materials for Li-Ion Batteries [J].
Chen, Zhongxue ;
Cao, Yuliang ;
Qian, Jiangfeng ;
Ai, Xinping ;
Yang, Hanxi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (35) :15196-15201
[6]   Facile synthesis and stable lithium storage performances of Sn- sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries [J].
Chen, Zhongxue ;
Cao, Yuliang ;
Qian, Jiangfeng ;
Ai, Xinping ;
Yang, Hanxi .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (34) :7266-7271
[7]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[8]   Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :2943-2948
[9]   Tin-based composite oxide thin-film electrodes prepared by pulsed laser deposition [J].
Ding, F ;
Fu, ZW ;
Zhou, MF ;
Qin, QZ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (10) :3554-3559
[10]   Multi-electron reaction materials for high energy density batteries [J].
Gao, Xue-Ping ;
Yang, Han-Xi .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (02) :174-189