Electrospun biocompatible Gelatin- Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering

被引:0
作者
Ahmadi, Samira Arab [1 ]
Pezeshki-Modaress, Mohamad [2 ]
Irani, Shiva [1 ]
Zandi, Mojgan [3 ]
机构
[1] Islamic Azad Univ, Dept Biol, Sci & Res Branch, Tehran, Iran
[2] Iran Univ Med Sci, Burn Res Canter, Tehran, Iran
[3] Iran Polymer & Petrochem Inst, Dept Biomat, Tehran, Iran
关键词
Bone Tissue Engineering; Chitosan; Gelatin; Hydroxyapatite; Osteoblast; Polycaprolactone; COMPOSITE SCAFFOLDS; CALCIUM-PHOSPHATE; POROUS SCAFFOLD; DRUG-DELIVERY; BIOMATERIALS; FABRICATION; CELLS;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibiity and bio activity of electrospun nanocomposite scaffolds, the behavior of human osteosarcoma cells (MG63) on fabricated nanofibers was evaluated using scanning electron microscopy (SEM), fluorescence microscopy analysis, measuring calcium deposits and MTT assay. The SEM micrographs at days 3 and 7 showed high cell attachment and spreading on the nanofibrous scaffolds. The MTT results demonstrated the proliferation of MG-63 cells during 10 days and the positive effect of nanofibers in comparison of cell culture plate. Considering the proliferation rate and calcification extent, the Gel-Cs-HA nanofibers reveal highest biocompatibiity for osteoblast cells which could be attributed to the smaller diameter fibers and more mechanical strength in the Gel-Cs-HA scaffold.
引用
收藏
页码:169 / 179
页数:11
相关论文
共 37 条
[1]   Bioceramics and Scaffolds: A winning Combination for Tissue engineering [J].
Baino, Francesco ;
Novajra, Giorgia ;
Vitale-Brovarone, Chiara .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2015, 3
[2]   Scaffolds Based Bone Tissue Engineering: The Role of Chitosan [J].
Costa-Pinto, Ana Rita ;
Reis, Rui L. ;
Neves, Nuno M. .
TISSUE ENGINEERING PART B-REVIEWS, 2011, 17 (05) :331-347
[3]   Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-ε-caprolactone scaffolds in osteogenic tissue engineering [J].
Declercq, Heidi A. ;
Desmet, Tim ;
Berneel, Elke E. M. ;
Dubruel, Peter ;
Cornelissen, Maria J. .
ACTA BIOMATERIALIA, 2013, 9 (08) :7699-7708
[4]   Bone regeneration: current concepts and future directions [J].
Dimitriou, Rozalia ;
Jones, Elena ;
McGonagle, Dennis ;
Giannoudis, Peter V. .
BMC MEDICINE, 2011, 9
[5]   Nanofiber: Synthesis and biomedical applications [J].
Eatemadi, Ali ;
Daraee, Hadis ;
Zarghami, Nosratolah ;
Yar, Hassan Melat ;
Akbarzadeh, Abolfazl .
ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2016, 44 (01) :111-121
[6]  
Ero-Phillips O. O., 2012, THESIS
[7]   Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering [J].
Fu, Wei ;
Liu, Zhenling ;
Feng, Bei ;
Hu, Renjie ;
He, Xiaomin ;
Wang, Hao ;
Yin, Meng ;
Huang, Huimin ;
Zhang, Haibo ;
Wang, Wei .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2014, 9 :2335-2344
[8]   High-Performance Hydroxyapatite Scaffolds for Bone Tissue Engineering Applications [J].
Gervaso, Francesca ;
Scalera, Francesca ;
Padmanabhan, Sanosh Kunjalukkal ;
Sannino, Alessandro ;
Licciulli, Antonio .
INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2012, 9 (03) :507-516
[9]  
Gordeladze J., 2017, Tissue Engineering for Artificial Organs, P525, DOI [DOI 10.1002/9783527689934.CH16, 10.1002/9783527689934.ch16]
[10]   Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering [J].
He, Xiaomin ;
Feng, Bei ;
Huang, Chuanpei ;
Wang, Hao ;
Ge, Yang ;
Hu, Renjie ;
Yin, Meng ;
Xu, Zhiwei ;
Wang, Wei ;
Fu, Wei ;
Zheng, Jinghao .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2015, 10 :2089-2099