Operator Scaling Dimensions and Multifractality at Measurement-Induced Transitions

被引:87
作者
Zabalo, A. [1 ]
Gullans, M. J. [2 ,3 ]
Wilson, J. H. [1 ,4 ,5 ]
Vasseur, R. [6 ]
Ludwig, A. W. W. [7 ]
Gopalakrishnan, S. [8 ,9 ]
Huse, David A. [2 ]
Pixley, J. H. [1 ,2 ,10 ]
机构
[1] Rutgers State Univ, Dept Phys & Astron, Ctr Mat Theory, Piscataway, NJ 08854 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] NIST Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[4] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[5] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[6] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[7] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[8] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[9] CUNY Coll Staten Isl, Dept Phys & Astron, Staten Isl, NY 10314 USA
[10] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.128.050602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Repeated local measurements of quantum many-body systems can induce a phase transition in their entanglement structure. These measurement-induced phase transitions (MIPTs) have been studied for various types of dynamics, yet most cases yield quantitatively similar critical exponents, making it unclear how many distinct universality classes are present. Here, we probe the properties of the conformal field theories governing these MIPTs using a numerical transfer-matrix method, which allows us to extract the effective central charge, as well as the first few low-lying scaling dimensions of operators at these critical points for (1 thorn 1)-dimensional systems. Our results provide convincing evidence that the generic and Clifford MIPTs for qubits lie in different universality classes and that both are distinct from the percolation transition for qudits in the limit of large on-site Hilbert space dimension. For the generic case, we find strong evidence of multifractal scaling of correlation functions at the critical point, reflected in a continuous spectrum of scaling dimensions.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Measurement-induced entanglement transitions in many-body localized systems [J].
Lunt, Oliver ;
Pal, Arijeet .
PHYSICAL REVIEW RESEARCH, 2020, 2 (04)
[32]   Long-range multipartite entanglement near measurement-induced transitions [J].
Avakian, Sebastien J. ;
Pereg-Barnea, T. ;
Witczak-Krempa, William .
PHYSICAL REVIEW RESEARCH, 2025, 7 (02)
[33]   Measurement-induced phase transitions in quantum raise-and-peel models [J].
Heinrich, Eliot ;
Chen, Xiao .
PHYSICAL REVIEW B, 2024, 110 (06)
[34]   Conformal Invariance and Multifractality at Anderson Transitions in Arbitrary Dimensions [J].
Padayasi, Jaychandran ;
Gruzberg, Ilya .
PHYSICAL REVIEW LETTERS, 2023, 131 (26)
[35]   Measurement-induced nonlocality in arbitrary dimensions in terms of the inverse approximate joint diagonalization [J].
Zhang, Li-qiang ;
Ma, Ting-ting ;
Yu, Chang-shui .
PHYSICAL REVIEW A, 2018, 97 (03)
[36]   Measurement-Induced State Transitions in a Superconducting Qubit: Beyond the Rotating Wave Approximation [J].
Sank, Daniel ;
Chen, Zijun ;
Khezri, Mostafa ;
Kelly, J. ;
Barends, R. ;
Campbell, B. ;
Chen, Y. ;
Chiaro, B. ;
Dunsworth, A. ;
Fowler, A. ;
Jeffrey, E. ;
Lucero, E. ;
Megrant, A. ;
Mutus, J. ;
Neeley, M. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
White, T. ;
Wenner, J. ;
Korotkov, Alexander N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (19)
[37]   Measurement-induced phase transitions in (d+1)-dimensional stabilizer circuits [J].
Sierant, Piotr ;
Schiro, Marco ;
Lewenstein, Maciej ;
Turkeshi, Xhek .
PHYSICAL REVIEW B, 2022, 106 (21)
[38]   Measurement-induced phase transitions in monitored infinite-range interacting systems [J].
Delmonte, Anna ;
Li, Zejian ;
Passarelli, Gianluca ;
Song, Eric Yilun ;
Barberena, Diego ;
Rey, Ana Maria ;
Fazio, Rosario .
PHYSICAL REVIEW RESEARCH, 2025, 7 (02)
[39]   Superactivation of Measurement-Induced Nonlocality [J].
常利娜 ;
骆顺龙 .
CommunicationsinTheoreticalPhysics, 2014, 62 (12) :809-812
[40]   Measurement-induced population switching [J].
Ferguson, Michael S. ;
Camenzind, Leon C. ;
Muller, Clemens ;
Biesinger, Daniel E. F. ;
Scheller, Christian P. ;
Braunecker, Bernd ;
Zumbuhl, Dominik M. ;
Zilberberg, Oded .
PHYSICAL REVIEW RESEARCH, 2023, 5 (02)